

Operator's Manual WaveSurfer 3000 Oscilloscopes

WaveSurfer 3000 Oscilloscopes Operator's Manual

© 2014 Teledyne LeCroy, Inc. All rights reserved.

Unauthorized duplication of Teledyne LeCroy documentation materials other than for internal sales and distribution purposes is strictly prohibited. However, clients are encouraged to distribute and duplicate Teledyne LeCroy documentation for their own internal educational purposes.

WaveSurfer and Teledyne LeCroy are trademarks of Teledyne LeCroy, Inc. Other product or brand names are trademarks or requested trademarks of their respective holders. Information in this publication supersedes all earlier versions. Specifications are subject to change without notice.

923648 Rev B November 2014

Contents

Safety Instructions	1
Symbols	1
Precautions	1
Operating Environment	2
Cooling	2
Power	2
Start Up	4
Setting Up the Oscilloscope	4
Powering On/Off	5
Software Activation	
Inputs/Outputs	7
Front Input/Output Panel	
Back Input/Output Panel	
Analog Inputs	
Probes	
Digital Inputs	
Touch Screen	
Menu Bar	
Signal Display Grid	
Descriptor Boxes	
Dialogs	
Turning On/Off Traces	
Annotating Traces	
Entering/Selecting Data	
Print Preview	
Printing/Screen Capture	20
Language Selection	20
Front Panel	21
Top Row Buttons	
, Trigger Controls	
Horizontal Controls	
Vertical Controls	
Math, Zoom, and Mem(ory) Buttons	
Cursor Controls	22
Adjust and Intensity Controls	23
Bottom Row Buttons	
Zooming Waveforms	
Creating Zooms	
Zoom Controls	
Vertical	
Channel Settings	

Probe Settings	
Auto Setup	
Restore Default Setup	
Viewing Status	
Digital (Mixed Signal)	
Digital Traces	
Digital Group Set Up	
Digital Display Set Up	
Renaming Digital Lines	
Timebase	
Timebase Settings	
Sampling Modes	
History Mode	
-	
Trigger	
Trigger Modes	
Trigger Types	
Setting Up Triggers	
Trigger Holdoff	
Display	
Display Settings	
Persistence	61
Cursors	63
Cursor Types	63
Cursor Settings	64
Measure	65
Setting Up Measurements	65
List of Standard Measurement Parameters	67
Calculating Measurements	
Math	
Setting Up Math Functions	
List of Standard Math Functions	
Trend	
Rescaling and Assigning Units	
Averaging Waveforms	
FFT	
Memory	81
Save Waveform to Memory	
Restore Memory	
Analysis	
WaveScan	
Utilities	
System Status	86

Remote Control Settings	87
Hardcopy Settings	90
Aux Output Settings	92
Date/Time Settings	92
Options	93
Preferences Settings	93
Calibration Settings	94
Acquisition Settings	95
E-Mail	
Miscellaneous Settings	96
Digital Voltmeter	
WaveSource Automatic Waveform Generator	99
Save/Recall	
Save/Recall Setups	101
Save/Recall Waveforms	
Save Table Data	
Auto Save	107
Disk Utilities	
LabNotebook	
Create Notebook Entry	
Print to Notebook Entry	110
Flashback Recall	
Configure LabNotebook Preferences	111
Maintenance	
Cleaning	112
Fuse Replacement	112
Calibration	
Touch Screen Calibration	113
Reboot Oscilloscope	
Adding an Option Key	113
WaveSurfer 3000 Firmware Update	114
Technical Support	114
Returning a Product for Service	115
Certifications	
EMC Compliance	117
Safety Compliance	118
Environmental Compliance	119
ISO Certification	119
Warranty	120

Welcome

Thank you for purchasing a Teledyne LeCroy WaveSurfer Oscilloscope. We're certain you'll be pleased with the detailed features unique to our instruments.

The manual is arranged in the following manner:

- Safety contains important precautions and information relating to power and cooling.
- The sections from **Start Up** through **Maintenance** cover everything you need to know about the operation and care of the oscilloscope.

Documentation for software options is available from the Teledyne LeCroy website at teledynelecroy.com. Our website maintains the most current product specifications and should be checked for frequent updates.

Remember...

When your product is delivered, verify that all items on the packing list or invoice copy have been shipped to you. Contact your nearest Teledyne LeCroy customer service center or national distributor if anything is missing or damaged. We can only be responsible for replacement if you contact us immediately.

Thank You

We truly hope you enjoy using Teledyne LeCroy's fine products.

Sincerely,

and C Mraef

David C. Graef Teledyne LeCroy *Vice President and Chief Technology Officer*

Safety Instructions

Observe these instructions to keep the instrument operating in a correct and safe condition. You are required to follow generally accepted safety procedures in addition to the precautions specified in this section. The overall safety of any system incorporating this instrument is the responsibility of the assembler of the system.

Symbols

These symbols appear on the instrument's front and rear panels or in its documentation to alert you to important safety considerations:

CAUTION of potential damage to instrument, or **WARNING** of potential bodily injury. Do not proceed until the information is fully understood and conditions are met.

High voltage. Risk of electric shock or burn.

Ground connection.

 \sim Alternating current.

Standby power (front of instrument).

Precautions

Use only the proper power cord shipped with this instrument and certified for the country of use.

Maintain ground. This product is grounded through the power cord grounding conductor. To avoid electric shock, connect only to a grounded mating outlet.

Connect and disconnect properly. Do not connect/disconnect probes or test leads while they are connected to a voltage source.

Observe all terminal ratings. Do not apply a voltage to any input (C1-C4 or EXT) that exceeds the maximum rating of that input. Refer to the front of the oscilloscope for maximum input ratings.

Use only within operational environment listed. Do not use in wet or explosive atmospheres.

Use indoors only.

Keep product surfaces clean and dry. See Cleaning in the Maintenance section.

Do not block the cooling vents. Leave a minimum six-inch (15 cm) gap between the instrument and the nearest object.

Do not remove the covers or inside parts. Refer all maintenance to qualified service personnel.

Do not operate with suspected failures. Do not use the product if any part is damaged. Obviously incorrect measurement behaviors (such as failure to calibrate) might indicate impairment due to hazardous live electrical quantities. Cease operation immediately and sequester the instrument from inadvertent use.

Operating Environment

Temperature: 0 to 50° C.

Humidity: Maximum relative humidity 90 % for temperatures up to 31° C, decreasing linearly to 50% relative humidity at 40° C.

Altitude: Up to 3,000 m at or below 30° C.

Cooling

The instrument relies on forced air cooling with internal fans and vents. Take care to avoid restricting the airflow to any part. Around the sides and rear, leave a minimum of 15 cm (6 inches) between the instrument and the nearest object. The feet provide adequate bottom clearance.

CAUTION. Do not block cooling vents. Always keep the area beneath the instrument clear of paper and other items.

The instrument also has internal fan control circuitry that regulates the fan speed based on the ambient temperature. This is performed automatically after start-up.

Power

The instrument operates from a single-phase, 100 to 240 Vrms (\pm 10%) AC power source at 50/60 Hz (\pm 5%), or a 100 to 120 Vrms (\pm 10%) AC power source at 400 Hz (\pm 5%). The instrument automatically adapts to the line voltage. Manual voltage selection is not required.

The AC inlet ground is connected directly to the frame of the instrument. For adequate protection again electric shock, connect to a mating outlet with a safety ground contact.

WARNING. Interrupting the protective conductor inside or outside the oscilloscope, or disconnecting the safety ground terminal, creates a hazardous situation. Intentional interruption is prohibited.

Maximum power consumption with all accessories installed (e.g., active probes, USB peripherals, digital leadsets) is 150 W (150 VA) for fourchannel models and 100 W (100 VA) for two-channel models. Power consumption in standby mode is 4 W.

AC Power

The instrument operates from a single-phase, 100 to 240 Vrms (\pm 10%) AC power source at 50/60 Hz (\pm 5%), or a 100 to 120 Vrms (\pm 10%) AC power source at 400 Hz (\pm 5%). Manual voltage selection is not required because the instrument automatically adapts to the line voltage.

Power Consumption

Maximum power consumption with all accessories installed (e.g., active probes, USB peripherals, digital leadset) is 150 W (150 VA) for four-channel models and 100 W (100 VA) for two-channel models. Power consumption in standby mode is 4 W.

Ground

The AC inlet ground is connected directly to the frame of the instrument. For adequate protection again electric shock, connect to a mating outlet with a safety ground contact.

WARNING. Only use the power cord provided with your instrument. Interrupting the protective conductor inside or outside the oscilloscope, or disconnecting the safety ground terminal, creates a hazardous situation. Intentional interruption is prohibited.

Fuse Replacement

Disconnect the power cord before inspecting or replacing the fuse. Open the fuse holder (located at the rear of the instrument below the AC power inlet) using a small, flat-bladed screwdriver. Replace the old fuse with a new 5 x 20 mm T-rated 3 A/250 V fuse. Close the fuse holder before powering on.

WARNING. For continued fire protection at all line voltages, replace the fuse with one of the specified type and rating only. Always disconnect the power cord before replacing the fuse.

Start Up

Setting Up the Oscilloscope

Carrying and Placing the Oscilloscope

The oscilloscope's case contains a built-in carrying handle. Grasp the handle firmly and lift the instrument. Always unplug the instrument from the power source before lifting and carrying it.

Place the instrument where it will have a minimum 15 cm (6 inch) clearance from the nearest object. Be sure there are no papers or other debris beneath the oscilloscope or blocking the cooling vents.

CAUTION. Do not place the instrument so that it is difficult to reach the power cord in case you need to quickly disconnect from power.

Positioning the Feet

The WaveSurfer is equipped with rotating, tilting feet to allow four different viewing positions.

To tilt the body back slightly for bench top viewing, pull the small flaps on the bottom of the feet away from the body of the oscilloscope.

To tilt the body forward, rotate both feet to the back. This position is useful when placing the oscilloscope on a high shelf. Pulling out the flaps in this position increases the angle of the tilt.

Connecting to Other Devices/Systems

Make the desired cable connections. All except for the power connection are optional.

After start up, configure the connection on the oscilloscope using the menu options listed below. More detailed instructions are provided later in this manual.

LAN

WaveSurfer 3000 accepts DHCP network addressing. Connect a cable from either Ethernet port on the back panel to a network access device. Go to Utilities > Utilities Setup > Remote and select TCPIP to obtain a network connection and IP address. Go to Utilities > Preference Setup > Email to <u>configure email settings</u>.

USB PERIPHERALS

Connect USB-peripherals (e.g., mouse, keyboard) to any USB port on the front or back of the instrument.

EXTERNAL MONITOR

WaveSurfer 3000 supports external monitors with 1024 x 600 ppi resolution. Connect the monitor cable to the VGA video output on the back of the instrument. The connection is "plug-and-play" and does not require any further configuration on the oscilloscope. If necessary, configure the monitor to receive output.

Printer

WaveSurfer 3000 supports PictBridge-compliant printers. Connect the printer to any host USB port. The connection is "plug-and-play."

EXTERNAL CONTROLLER

Connect a USB-A/B cable from the USBTMC port or an Ethernet cable from the LAN port on the back of the instrument to the controller. Go to Utilities > Utilities Setup > Remote to <u>configure remote control</u>.

OTHER AUXILIARY DEVICE

To send trigger out to another device, connect a BNC cable from Aux Out on the back of he instrument to the other device.

Powering On/Off

The **Power button** at the lower, left front of the oscilloscope controls the operational state of the instrument.

Press the button to switch on the instrument. The LED on the button lights to show the oscilloscope is operational.

CAUTION. Do not power on or calibrate the oscilloscope with a signal attached.

Press the button again to power down. You can also use the **File > Shutdown** menu option to execute a proper shut down process and preserve settings before powering down.

The Power button does not disconnect the oscilloscope from the AC power supply. The only way to fully power down the instrument is to unplug the AC power cord from the outlet.

We recommend unplugging the instrument if it will be unused for a long period of time.

Software Activation

The oscilloscope operating software (firmware and standard applications) is active upon delivery. At powerup, the oscilloscope loads the software automatically.

Firmware

Free firmware updates are available periodically from the Teledyne LeCroy website at:

teledynelecroy.com/support/softwaredownload.

Registered users can receive an email notification when a new update is released. Follow the instructions on the website to download and install the software.

Purchased Options

If you decide to purchase an option, you will receive a license key via email that activates the optional features on the oscilloscope. See <u>Adding an Option Key</u> for instructions on activating optional software packages.

Inputs/Outputs

Front Input/Output Panel

- A. Power button.
- B. Channel inputs 1-4 for analog signals.
- C. **Front-mounted host USB ports** for transferring data or connecting peripherals such as a mouse or keyboard.
- D. Ground and calibration output terminal used to compensate passive probes.

Back Input/Output Panel

- A. WaveSource connector outputs signal generated by the internal waveform generator.
- B. MicroSD Card slot.
- C. EXT Trig connector accepts external trigger.
- D. AUX OUT connector sends trigger out.
- E. VGA connector sends video out to external monitors.
- F. Ethernet port connects the oscilloscope to a LAN.
- G. USBTMC port enables remote control of the oscilloscope.
- H. Additional host USB ports (2) connect external devices such as printers or storage drives.
- I. Fuse holder.
- J. AC Power inlet.

See the general set up instructions for more information about configuring connections to other devices.

Analog Inputs

A series of BNC connectors arranged on the front of the oscilloscope are used to input analog signal on Channels 1-4. EXT, on the back of the oscilloscope, can be used to input an external trigger pulse.

Channel connectors use the ProBus interface. The ProBus interface contains a 6-pin power and communication connection and a BNC signal connection to the probe. It includes sense rings for detecting passive probes and accepts a BNC cable connected directly to it. ProBus offers 50 Ω and 1 M Ω input impedance and control for a wide range of probes.

The interfaces power probes and completely integrate the probe with the oscilloscope channel. Upon connection, the probe type is recognized and some setup information, such as input coupling and attenuation, is performed automatically. This information is displayed on the Probe Dialog, behind the Channel (C*x*) dialog. System (probe plus oscilloscope) gain settings are automatically calculated and displayed based on the probe attenuation.

Probes

WaveSurfer3000 oscilloscopes are compatible with the included passive probes and all Teledyne LeCroy ProBus active probes that are rated for the oscilloscope's bandwidth. Probe specifications and documentation are available at teledynelecroy.com/probes.

The passive probes supplied with your oscilloscope are matched to the input impedance of the instrument but may need further compensation. Follow the directions in the probe instruction manual to compensate the frequency response of the probes.

Digital Inputs

Available with the WS3K-MSO option, the **digital leadset** enables input of up-to-16 lines of digital data. Lines can be organized into two logical groups and renamed appropriately.

The digital leadset features two digital banks with separate Threshold controls, making it possible to simultaneously view data from different logic families.

Connecting/Disconnecting the Leadset

To connect the leadset to the oscilloscope, push the connector into the mixed signal interface below the front panel until you hear a click.

To remove the leadset, press in and hold the buttons on each side of the connector, then pull out to release it.

Grounding Leads

Each flying lead has a signal and a ground connection. A variety of ground extenders and flying ground leads are available for different probing needs.

To achieve optimal signal integrity, connect the ground at the tip of the flying lead for *each* input used in your measurements. Use either the provided ground extenders or ground flying leads to make the ground connection.

Touch Screen

The touch screen is the principal viewing and control center of the oscilloscope. The entire display area is active: use your finger or a stylus to touch, touch-and-drag, or draw a selection box. Many controls that display information also work as "buttons" to access other functions.

If you have a mouse installed, you can click anywhere you can touch to activate a control; in fact, you can alternate between clicking and touching, whichever is convenient for you.

The touch screen is divided into the following major control groups:

Menu Bar

The top of the window contains a complete menu of oscilloscope functions. Making a selection here changes the dialogs displayed at the bottom of the screen.

Many common oscilloscope operations can also be performed from the front panel or launched via the Descriptor Boxes. However, the menu bar is the best way to access dialogs for Save/Recall (File) functions, Display functions, Status, LabNotebook, and Utilities/Preferences setup.

Signal Display Grid

The grid area displays the waveform traces. It is sectioned into 10 Horizontal (Time) divisions and 8 Vertical (Voltage) divisions.

By default, the oscilloscope divides the screen into a maximum of three grids, one each for channels/memories, math functions, and zooms. All traces of the same type appear on the same grid.

Three other grid layouts are available: Single Grid, which displays all traces on the same grid, XY Grid, which puts the oscilloscope in XY mode, and XY Single Grid, which creates one XY grid and one single grid for the rest of your traces.

Different types of traces opening in separate grids.

Adjusting Grid Brightness

You can adjust the brightness of the grid lines to make either the grid or traces more visible. Go to Display > Display Setup and enter a new Grid Intensity percentage. The higher the number, the brighter and bolder the arid lines.

Grid Indicators

These indicators appear outside the grid to mark important points on the display. They are matched to the color of the trace to which they apply.

Trigger Position - A small triangle along the bottom (horizontal) edge of the grid shows the time the oscilloscope is set to trigger an acquisition. Unless Delay is set, this indicator is at the zero (center) point of the grid. Trigger Delay is shown at the top right of the Timebase descriptor box.

Pre/Post-trigger Delay - A small arrow to the bottom left or right of the grid indicates that a pre- or post-trigger Delay has shifted the Trigger Position indicator to a point in time not displayed on the grid. All trigger Delay values are shown on the Timebase Descriptor Box.

Trigger Level - This small triangle at the right edge of the grid tracks the trigger voltage level. If you change the trigger level when in Stop trigger mode, or in Normal or Single mode without a valid

trigger, a hollow triangle of the same color appears at the new trigger level. The trigger level indicator is not shown if the triggering channel is not displayed.

Zero Volts Level - This indicator is located at the left edge of the grid. One appears for each open trace on the grid, sharing the number and color of the trace.

Various **Cursor lines** appear over the grid to indicate specific voltage and time values on the waveform. Touch-and-drag cursor indicators to guickly reposition them.

Grid Context Menu

Quickly touching a waveform trace opens a pop-up menu with shortcuts to the appropriate trace setup dialog, or the Math and Measure setup dialogs. You can also use it to turn off the trace or place an annotation label on it.

Descriptor Boxes

Shown just beneath the grid display, these boxes provide a summary of your channel, timebase and trigger settings. They also act as convenient navigation tools.

Descriptor boxes appear when a trace is turned on. Touch the descriptor box once to activate the trace. When a trace is active, its descriptor Box is highlighted, and front panel controls will work for that trace. Touch the descriptor box a second time to open its corresponding setup dialog.

C1	DC1M	C2	DC1M
	200 mV/div		5.00 mV/div
	10.0 mV ofs		-300 µV ofst

Highlighted channel descriptor box (right) is active. Controls will work for this trace.

Channel Descriptor Box

Channel trace descriptor boxes correspond to analog signal inputs. They show Vertical settings and any Vertical cursor readouts: (clockwise from top left) Trace Number (Cx), Pre-Processing List (summarizes changes from default state), Coupling, Gain Setting, Offset Setting, and Averaging Sweeps Count.

Codes are used to indicate pre-processing that has been applied to the input. The codes have a long and short form. When several processes are in effect, the short form is used.

Pre-Processing Type	ocessing Type Long Form	
Inversion	INV	1
Deskew	DSQ	DQ
Coupling	DC50, DC1M or AC1M	D50, D1M, or A1
Ground	GND	G
Bandwidth Limiting	BWL	В

Preprocessing Symbols on Descriptor Boxes

Similar descriptor boxes appear for zoom (Zx), math (Fx), and memory (Mx) traces. These descriptor boxes show any Horizontal scaling that differs from the signal Timebase.

Digital Descriptor Box

Digital descriptor boxes (WS3K-MSO) appear whenever a digital line group is enabled. They are named Digital1 and Digital2 corresponding to one of the two line groups. They show the number of digital lines in the group, digital sample rate, and digital memory.

Timebase Descriptor Box

Timebas	se	0 ns
	200) ns/div
4.00 kS	2.0	0 GS/s

The TimeBase descriptor box shows: (clockwise from top right) Trigger Delay (position), Time/div, Sample Rate, Number of Samples, and Sampling Mode (blank when in real-time mode).

Trigger Descriptor Box

Trigger	C1 DC
Stop	-8 mV
Edge	Positive

Trigger descriptor box shows: (clockwise from top right) Trigger Source and Coupling, Trigger Level (V), Slope, Trigger Type, Trigger Mode.

Setup information for Horizontal cursors, including the time between cursors and the frequency, is shown beneath the TimeBase and

Trigger descriptor boxes. See the Cursors section for more information.

Timebas	e 0.00 µs	Trigger	C1 DC
	1.00 µs/div	Stop	-80 µV
20.0 kS	2.00 GS/s	Edge	Positive
X1= -1.57	750 μs ΔX=	3.5490) µs
X2= 1.97	40 μs 1/ΔX	= 281.77	7 kHz

Dialogs

Dialogs appear at the bottom of the display for entering setup data. The top dialog will be the main entry point for the selected setup option. For convenience, related dialogs appear as a series of tabs behind the main dialog. Touch the tab to open the dialog.

Main Dialog	Related Dialogs		Right-Ha	and Dialog	
↓	\mathbf{V}				
Memories M1	M2		Zoom		🙁 CLOSE
Trace On	To save Waveform Memory	Source: C1	Segments First	Horizontal Center	Vertical Center
L 🔽 J	to a local or network folder, use the "File" menu:	Stored: 4/18/2014 13:06:52 PM Notes		0 Scale / div	_0
Copy From Waveform	1			1.00	1.00
_ <mark>_C1</mark>	Actions for trace M1	4		x 1.00	x 1.00
Copy Now	Clear Measure Memory	Label	Reset Zoom	e out	in Out

Right-Hand Dialogs

At times, your selections will require more settings than normally appear (or can fit) on a dialog, or the task commonly invites further action, such as zooming a new trace. In that case, sub-dialogs will appear to the right-side of the main dialog. These right-hand dialog settings always apply to the object that is being configured on the left-hand dialog.

Action Toolbar

Several setup dialogs contain a toolbar at the bottom of the dialog. These buttons apply common actions without having to leave the underlying set up dialog. They always apply to the active trace.

Measure opens the Measure pop-up to set measurement parameters on the active trace.

Zoom creates a zoom trace of the active trace.

Math opens the Math pop-up to apply math functions to the active trace and create a new math trace.

Decode opens the main Serial Decode dialog where serial data decoders can be configured and applied. This button is only active if you have decoder software options installed.

Store loads the active trace into the corresponding memory location (C1, F1 and Z1 to M1; C2, F2 and Z2 to M2, etc.).

Find Scale automatically performs a vertical scaling that fits the waveform into the grid.

Label opens the Label pop-up to annotate the active trace.

Turning On/Off Traces

Analog Trace

From the display, choose **Vertical > Channel <#> Setup** to turn on the trace. To turn it off, clear the **Trace On** checkbox on the corresponding Channel dialog.

From the front panel, press the Channel button (1-4) to turn on the trace; press again to turn it off.

Digital Trace

From the display, choose Vertical > Digital <#> Setup.

From the front panel, press the **Dig button**, then check **Group** on the Digital<#> trace dialog. Clear Group to turn off the trace.

Other Traces

You can quickly create zoom or math traces without leaving the setup dialogs by touching the **Zoom** or **Math** <u>toolbar button</u> at the bottom of the dialog. Also use the front panel **Zoom**, **Math**, or **Mem**(ory) buttons to quickly create traces.

Activating Traces

A trace descriptor box appears on the display for each enabled trace. Touch this box at any time to activate the trace; touch it again to open the setup dialog. A highlighted descriptor box indicates the active trace to which all actions apply.

C1	DC1	м	C2	DC1M
	200 mV/0	div		5.00 mV/div
-	10.0 mV o	fst		-300 µV ofst

Inactive trace descriptor (left), active trace descriptor (right).

Although several traces may be open and appear on the grid, only one at a time is active. When you activate a trace, the dialog at the bottom of the screen automatically switches to the appropriate setup dialog for that trace. The tab at the top of the dialog shows to which trace it applies.

Active descriptor label matches active setup dialog tab.

Annotating Traces

The Label function gives you the ability to add custom annotations to traces that are shown on the display. Labels are numbered sequentially in the order they were created. Once placed, labels can be moved to new positions or turned off.

Create Label

1. Touch the trace and choose **Set label...** from the context menu, or touch the trace descriptor box twice and touch the **Label toolbar button** on the setup dialog.

C1: Trace Annotation			×
Labels	Vi	ew Labels	
Text of label		V	
		Add Label	
		Remove Label	
Label Text	Hori	zontal Pos.	
Text of label	0.0 ns		4
Use Trace Vertical Position 🗸			
Label position may either be specifie or by dragging the label using the t			
Close			

- 2. On the Trace Annotation pop-up, touch Add Label.
- 3. Enter the Label Text.
- 4. Optionally, enter the **Horizontal Pos.** and **Vertical Pos.** (in same units as the trace) at which to place the label. The default position is 0 ns horizontal. You can optionally check **Use Trace Vertical Position** instead of entering a Vertical Pos.

Reposition Label

Once placed, drag-and-drop labels to a new position on the grid, or reopen the Trace Annotation pop-up and enter a new **Horizontal Pos.** and **Vertical Pos.**

Edit/Remove Label

Open the Trace Annotation pop-up and select the **Label**. You can use the **Up/Down arrow** keys to scroll the list. Change the **Label Text** or **Horizontal** and **Vertical Pos.**(itions). Touch **Remove Label** to delete it.

Turn On/Off Labels

After labels have been placed, you can turn on/off all labels at once by opening the Trace Annotation dialog and selecting/deselecting the **View labels** checkbox.

Entering/Selecting Data

Touch

Touch once to activate a control. In some cases, you'll immediately see a pop-up menu of options. Touch one to select it.

buttons where they appear on

larger pop-ups to change how menu options are displayed.

In other cases, data entry fields appear highlighted in blue when you touch them. When a data entry field is highlighted, it is active and can be modified by using the front panel Adjust knob. Or, touch it again and use the pop-up menu or keypad to make an entry.

You'll see a pop-up keypad when you touch twice on a numerical data entry field. Use it exactly as you would a calculator. When you touch OK, the calculated value is entered in the field.

The Set to... buttons quickly enter the maximum, default or minimum value for that field.

The Up and Down arrow buttons increment/decrement the displayed value.

The Variable checkbox allows you to make fine increment changes when using the Up and Down arrow buttons.

Touch & Drag

Touch-and-drag cursor lines and annotation labels to reposition them on the grid; this is the same as setting the values on the dialog.

Touch-and-drag to draw a selection box around part of a trace to quickly zoom that portion.

Print Preview

The Print Preview feature allows you to pause the fast display for closer waveform inspection or printing. No function other than printing is available when in Print Preview mode. All oscilloscope analysis functions (such as measurement calculations) are also paused.

There are three ways to invoke Print Preview:

- On the **Utilities > Utilities Setup > Hardcopy** dialog, check the box labeled **Preview on Print**. This configures the front panel **Print button** button so that the first press puts the oscilloscope into Print Preview mode, and the second press prints the screen image according to the Hardcopy setup.
- On the Utilities > Utilities Setup > Hardcopy dialog, touch the Preview button above the Print button.

• From the menu bar, choose **File > Print Preview**. A green checkmark appears next to the menu option to show you are in Preview mode.

Following any of these actions, you should see the message "Print preview" appear in red at the right of the message bar.

Print preview 10/22/2014 10:33:19 AM

When you go on to print the screen, you will see the message "Hardcopy saved to..." (or "Printing started..." if sending to a printer) at the left of the message bar.

Operating any other dialog or front panel control ends the Print Preview and resumes acquisition processing.

Printing/Screen Capture

The Print function captures an image of the display and outputs it according to your Hardcopy settings.

There are three ways to print a capture of the screen:

- Touch the front panel Print button.
- Choose File > Print.
- Choose Utilities > Utilities Setup > Hardcopy tab and touch the Print button to the far right of the dialog.

NOTE: When the front panel Print button is configured to capture the screen as a LabNotebook entry, only the File and Utilities menu print options will function according to your Hardcopy setup.

Language Selection

To change the language that appears on the touch screen:

- 1. Go to Utilities > Preference Setup > Preferences and make your Language selection.
- 2. Follow the prompt to restart the oscilloscope application.

Front Panel

Most front panel controls duplicate functionality available through the touch screen display and are described on the following pages.

All the knobs on the front panel function one way if turned and another if pushed like a button. The top label describes the knob's "turn" action, the bottom label its "push" action.

Front panel buttons light up to indicate which traces and functions are active. Actions performed from the front panel always apply to the active trace.

Top Row Buttons

Auto Setup performs an Auto Setup.

Default Setup resets the oscilloscope to the factory defaults.

Print captures the entire screen and outputs it according to your <u>Hardcopy settings</u>. It can also be configured for <u>Print Preview</u> or to <u>output a LabNotebook entry</u>.

Touch Screen enables/disables touch screen functionalilty.

Clear Sweeps resets the acquisition counter and any cumulative measurements.

Trigger Controls

Level knob changes the trigger threshold level (V). The number is shown on the Trigger descriptor box. Pushing the knob sets the trigger level to the 50% point of the input signal.

READY indicator lights when the trigger is armed. **TRIG'D** is lit momentarily when a trigger occurs. A fast trigger rate causes the light to stay lit continuously.

Setup corresponds to the menu selection Trigger > Trigger Setup. Press it once to open the Trigger Setup dialog and again to close the dialog.

Auto turns on Auto trigger mode. The oscilloscope triggers after a time-out, even if the trigger conditions are not met.

Normal turns on Normal trigger mode. The oscilloscope triggers each time a signal is present that meets the conditions set for the type of trigger selected.

Single turns on Single trigger mode. The oscilloscope triggers once (single-shot acquisition) when the input signal meets the trigger conditions. If the scope is already armed, it will force a trigger.

Stop prevents the oscilloscope from triggering on a signal. If you boot up the instrument with the trigger in Stop mode, a "No trace available" message is shown. Press the Auto button to display a trace.

Horizontal Controls

The Delay knob changes the Trigger Delay value (S) when turned. Push the knob to reset Delay to zero.

The **Horizontal Adjust knob** sets the Time/division (S) of the oscilloscope acquisition system when the trace source is an input channel. The Time/div value is shown on the Timebase descriptor box. When using this control, the oscilloscope allocates memory as needed to maintain the highest sample rate possible for the timebase setting. When the trace is a zoom, memory or math function, turn the knob to change the horizontal scale of the trace, effectively "zooming" in or out. By default, the knob adjusts values in 1, 2, 5, 10 step increments. Push the knob to change the action to fine increments; push it again to return to stepped increments.

Vertical Controls

Channel buttons turn on a channel that is off, or activate a channel that is already on. When the channel is active, pushing its channel button turns it off. A lit button shows the active channel.

Offset knob adjusts the zero level of the trace (this makes it appear to move up or down relative to the center axis of the grid). The value appears on the trace descriptor box. Push it to reset Offset to zero.

Gain knob sets Vertical Gain (V/div). The value appears on the trace descriptor box. By default, the knob adjusts values in 1, 2, 5, 10 step increments. Push the knob to change the action to fine increments; push it again to return to stepped increments.

Dig button enables digital input through the Digital Leadset on -MS models.

Math, Zoom, and Mem(ory) Buttons

The **Zoom** button creates a quick zoom for each open channel trace. Touch the zoom trace descriptor box to display the zoom controls.

The Math and Mem(ory) buttons open the corresponding setup dialogs.

If a Zoom, Math or Memory trace is active, the button illuminates to indicate that the Vertical and Horizontal knobs will now control that trace.

Cursor Controls

Cursors identify specific voltage and time values on the waveform. The white cursor lines help make these points more visible. A readout of the values appears on the trace descriptor box.

There are five preset cursor types, each with a unique appearance on the display. These are described in more detail in the <u>Cursors</u> section.

Type selects the cursor type. Continue pressing to cycle through all cursor until the desired type is found. The type "Off" turns off the cursor display.

Cursor knob repositions the selected cursor line when turned. Push to select a different cursor line to adjust.

Adjust and Intensity Controls

The Adjust knob changes the value in any highlighted data entry field when turned. Pushing the Adjust knob toggles between coarse (large increment) or fine (small increment) adjustments when the knob is turned.

When more data is available than can actually be displayed, the Intensity button helps to visualize significant events by applying an algorithm that dims less frequently occurring samples. This feature can also be accessed from the Display Setup dialog.

Intensity 40% (left) dims samples that occur ≤ 40% of the time to highlight the more frequent samples, vs. intensity 100% (right) which shows all samples at the same intensity.

Bottom Row Buttons

Decode opens the Serial Decode dialog if you have serial data decoder options installed.

WaveScan opens the WaveScan dialog.

History opens the History Mode dialog.

WaveSource opens the WaveSource internal waveform generator dialog if you have the function generator option installed.

Zooming Waveforms

The Zoom function magnifies a selected region of a trace. On WaveSurfer 3000 model oscilloscopes, you can display up to four zoom traces (Z1-Z4) taken from any channel, math, or memory trace.

Creating Zooms

To create a zoom, touch -and-drag to draw a selection box around any part of the source waveform.

Selection box over trace.

The zoom will resize the selected portion to fit the full width of the grid. The degree of vertical and horizontal magnification, therefore, depends on the size of the rectangle that you draw.

The zoom opens in a new grid, with the area around the zommed portion shaded. New zooms are turned on and visible by default. However, you can turn off a particular zoom if the display becomes too crowded, and the zoom settings are saved in its Zx location, ready to be turned on again when desired.

Area around zoomed portio shaded.

Adjust Zoom

The zoom's Horizontal units will differ from the signal timebase because the zoom is showing a calculated scale, not a measured level. This allows you to adjust the zoom factor using the front panel knobs or the <u>Zoom dialog controls</u> however you like without affecting the timebase (a characteristic shared with math

and memory traces).

Turn off Zoom

To close the zoom, either touch the zoom descriptor box twice to open the Zoom dialog and deselect **Trace On**, or touch the zoom trace to open the context menu and choose **Off**.

Zoom Controls

To open the Zoom dialog, touch twice on any zoom descriptor box, or choose **Math > Zoom Setup** from the menu bar.

Trace Controls

Trace On shows/hides the zoom trace. It is selected by default when the zoom is created.

Source lets you change the source for this zoom to any channel, math, or memory trace while maintaining all other settings.

Segment Controls

These controls are used in Sequence Sampling Mode.

Zoom Factor Controls

These controls on the Zx dialogs appear throughout the oscilloscope software:

- **Out** and **In buttons** increase or decrease the magnification of the zoom, and consequently change the Horizontal and Vertical Scale settings. Continue to touch either button until you've achieved the desired level of zoom.
- Horizontal Scale/div sets the amount of time represented by each horizontal division of the grid. It is the equivalent of Time/div, only unlike the Timebase setting, it may be set differently for each zoom, math function, or memory trace.
- Horizontal Center sets the voltage or time that is to be at the center of the screen on the zoom trace. The horizontal center is the same for all zoom traces.
- Reset Zoom returns the zoom to x1 magnification.

Vertical

Vertical, also called Channel, settings usually relate to voltage level and control the trace along the Y axis.

NOTE: While Digital settings can be accessed through the Vertical menu on oscilloscopes with the Mixed Signal option, they are handled quite differently. See <u>Digital</u>.

The amount of voltage displayed by one vertical division of the grid, or Vertical Scale (V/div), is most quickly adjusted by using the front panel **Vertical knob**. The Channel descriptor box always shows the current Vertical Scale setting.

If a Teledyne LeCroy probe is connected to the channel, a Probe dialog appears behind the Cx dialog.

Channel Settings

Volts/div sets the vertical scale (aka gain or sensitivity). Select **Variable Gain** adjustment or leave the checkbox clear for fixed adjustment.

Offset adds a defined value of DC offset to the signal as acquired by the input channel. This may helpful in order to display a signal on the oscilloscope grid while maximizing the vertical height (or gain) of the signal. A negative value of offset will "subtract" a DC voltage value from the acquired signal (and move the trace down on the grid") whereas a positive value will do the opposite. Touch **Zero Offset** to return to zero.

A variety of **Bandwidth** filters are available at a variety of fixed settings. The exact settings vary by model. To limit bandwidth, select a filter from this field.

Invert inverts the waveform for the selected channel.

Coupling may be set to DC 50 Ω , DC1M, AC1M or GROUND (Gnd).

CAUTION. The maximum input voltage depends on the input used. Limits are displayed on the front of the oscilloscope. Whenever the voltage exceeds this limit, the coupling mode automatically switches to GROUND. You then have to manually reset the coupling to its previous state. While the unit does provide this protection, damage can still occur if extreme voltages are applied.

Deskew adjusts the amount of horizontal time offset to compensate for propagation delays caused by different probes or cable lengths. The valid range depends on the current timebase setting. The Math deskew function performs the same activity.

Probe Settings

When a Teledyne LeCroy-compatible probe is connected to the oscilloscope input, the probe is automatically identified and the model name displayed on the Channel dialog under the "Probe" heading. Also, the Probe dialog bearing the probe name is added to the right of the Channel dialog. When a probe is not connected, the Channel dialog shows only the Cx tab for vertical setup.

When third-party probes are connected, an **Attenuation** field appears on the Cx dialog, with a default value of /1, allowing you to enter attenuation and rescale values manually.

Channel dialog with tab for connected probe.

The Probe Dialog displays probe attributes and (depending on the probe type) allows you to AutoZero or DeGauss probes from the oscilloscope touch screen. Other settings may appear, as well, depending on the probe model.

C1 _ ZD200 _		CLOSE
To remove output offset drift, Start an	Attributes	
AutoZero cycle by removing probe from circuit under test then pushing AutoZero		1009
Auto		200 MHz
Zero		÷10.00

Probe dialog showing the connected probe's control attributes.

Auto Zero Probe

Auto Zero corrects for DC offset drifts that naturally occur from thermal effects in the amplifier of active probes. Teledyne LeCroy probes incorporate Auto Zero capability to remove the DC offset from the probe's amplifier output to improve the measurement accuracy.

CAUTION. Remove the probe from the circuit under test before initializing Auto Zero.

DeGauss Probe

The Degauss control is activated for some types of probes (e.g., current probes). Degaussing eliminates residual magnetization from the probe core caused by external magnetic fields or by excessive input. It is recommended to always degauss probes prior to taking a measurement.

CAUTION. Remove the probe from the circuit under test before initializing DeGauss.

Auto Setup

Auto Setup quickly configures the essential oscilloscope settings based on the first input signal it finds, starting with Channel 1. If nothing is connected to Channel 1, it searches Channel 2 and so forth until it finds a signal. Vertical Scale (V/div), Offset, Timebase (Time/div), and Trigger are set to an Edge trigger on the first, non-zero-level amplitude, with the entire waveform visible for at least 10 cycles over 10 horizontal divisions.

To run Auto Setup, press the front panel Auto Setup button.

Restore Default Setup

Restore the oscilloscope to its factory default state by pressing the front panel **Default Setup** button. You can also restore default settings by choosing **File > Recall Setup > Recall Default**.

Default settings for your oscilloscope include the following:

Channel/Vertical	C1-C4 on at 50 mV/div Scale, 0 V Offset					
Timebase	Real Time Sampling at 50 ns/div, 0 Delay, 2.0 kS at 4 GS/s, 100 kS Memory					
Trigger	C1 with an Auto Positive Edge, DC Coupling, 0 V Level					
Display	Auto Grid					
Cursors	Off					
Measurements	Cleared					
Math	Cleared					

Viewing Status

All oscilloscope settings can be viewed through the various Status dialogs. These show all existing acquisition, trigger, channel, math function, measurement and parameter configurations, as well as which are currently active.

Access the Status dialogs by choosing the Status option from the Vertical, Timebase, Trigger, or Math menus (e.g., Channel Status, Acquisition Status).

Acquisition	Trigger time	C1C4	F1F2	Z1Z4	XY	M1M2			🙁 CLOSE	
Horizontal								Show Status For		
Time / Div Time / Pt : Pts / Div :	me / Pt : 250.000e-12		Sam	pling rate : ple mode : ger delay :	4.00	:/0000000 GS RealTim 0.0 µ				
								Acqu.	Time	
Trigger								C1C4	F1F2	
Mode :		Auto						0104	F1F2	
Type : Source :	Edge C1					Trigger on Z1:	Z1Z4	XY		
Slope : Level :		ositive .40 mV						M1M2		
Coupling :	20	DC							1	

Digital (Mixed Signal)

The <u>digital leadset</u> (delivered with the WS3K-MSO option) inputs up-to-16 lines of digital data. Leads are organized into two banks of eight leads each, and you assign each bank a standard Logic Family or a custom Threshold to define the digital logic of the signal.

The Digital set up dialog has two tabs each corresponding to one of two possible digital groups, labeled Digital1 to Digital2, which correspond to buses. You choose which lines from among the 16 make up each digital group, what they are named, and how the group appears on the display. Initially, logical lines are numbered the same as the physical lead they represent, although any line number can be re-assigned to any lead.

Digital Traces

When a digital group is enabled, digital Line traces show which lines are high, low, or transitioning relative to the threshold. You can also view a digital Bus trace that collapses all the lines in a group into their Hex values.

Group of four traces displayed with a Vertical Position of positive 4.0 (top of grid) and a Group Height 4.0 (half the grid).

Digital Group Set Up

1. From the menu bar, choose Vertical > Digital <#> Setup, or press the front panel Dig button and select the desired Digital<#> tab.
2. On the Digital<#> set up dialog, check the boxes for lines D0 through D15 that comprise the group.

Touch the Display D0-D7 and Display D8-D15 buttons to quickly turn on the entire digital bank, or touch the Right and Left Arrow buttons to switch between each digital bank as you make line selections.

NOTE: Each group can consist of anywhere from 1 to 16 of the leads that are (or will be) connected to signal, from either digital bank regardless of the Logic set on the bank. It does not matter if the some or all of the lines have been included in other groups.

- 3. When all group members are selected, optionally rename them.
- 4. Go on to set up the digital display for the group. Check Group to enable the display.
- 5. When you're finished on the Digital<#> dialog, touch the Logic Setup tab and choose the Logic Family that applies to each digital bank, or set custom Threshhold values.

Digital Display Set Up

You can choose the type and position of the digital traces that appear on screen for each digital group.

- 1. <u>Set up the digital group</u>.
- 2. Choose a Display Mode:
 - Lines (default) shows a time-correlated trace indicating high, low, and transitioning points (relative to the Threshold) for *every* digital line in the group. The size and placement of the lines depend on the number of lines, the Vertical Position and Group Height settings.
 - **Bus** collapses the lines in a group into their Hex values. It appears immediately below all the Line traces when both are selected.
 - Lines & Bus displays both line and bus traces at once.
- 3. In **Vertical Position**, enter the number of divisions (positive or negative) relative to the zero line of the grid where the display begins. The top of the first trace appears at this position.
- 4. In **Group Height**, enter the total number of grid divisions the entire display should occupy. All the selected traces (Line and Bus) will appear in this much space.

Individual traces are resized to fit the total number of divisions available. The example above shows a group of three Line traces plus the Bus trace occupying a Group Height of 4.0 divisions. Each trace takes up one division.

5. Check the **Group** box to enable the display.

To close traces, uncheck the **Group** box.

Renaming Digital Lines

The labels used to name each line can be changed to make the user interface more intuitive. Also, labels can be "swapped" between lines.

Changing Labels

- 1. Set up the digital group.
- 2. Touch Label and select from:
 - Data the default, which appends "D." to the front of each line number.
 - Address appends "A." to the front of each line number.
 - Custom lets you create your own labels line by line.
- 3. If using Custom labels:
 - Touch the Line number button below the corresponding checkbox. If necessary, use the Left/Right Arrow buttons to switch between banks.
 - Use the virtual keyboard to enter the name, then press OK.

The button and any active line traces are renamed accordingly.

Swapping Lines

This procedure helps in cases where the physical lead number is different from the logical line number you would like to assign to that input (e.g., a group is set up for lines 0-4, but lead 5 was accidentally attached to the probing point). It can save time having to re-attach leads or re-configure groups.

- 1. Select a Label of Data or Address.
- 2. Touch the **Line number button** below the corresponding checkbox. If necessary, use the **Left/Right Arrow buttons** to switch between banks.
- 3. From the popup, choose the line with which you want to swap labels.

The button and any active line traces are renumbered accordingly.

Timebase

Timebase, also known as Horizontal, settings control the trace along the X axis. The timebase is shared by all channels.

The time represented by each horizontal division of the grid, or **Time/Division**, is most easily adjusted using the **front panel Horizontal knob**. Full Timebase set up, including sampling mode selection, is done on the Timebase dialog, which can be accessed by either choosing **Timebase > Horizontal Setup** from the menu bar, or touching the **Timebase descriptor box**.

The Timebase dialog contains settings for Sampling Mode, Timebase Mode, Real Time Memory.

Timebase Settings

TimeBase			🙁 CLOSE
Sampling Mode	Timebase mode	Memory	
RealTime Sequence RIS Roll	Time/Division 100 ns 4 kS at 4 GS/s 250 ps/pt for 1 µs	Maximum Points 10kS	
16 sweeps	Delay Set To O ns ∡		

Sampling Mode

Choose from Real Time, Sequence, RIS, Roll, or Average mode.

Timebase Mode

Time/Division is the time represented by one horizontal division of the grid. Touch the Up/Down Arrow buttons on the Timebase dialog or turn the front panel Horizontal knob to adjust this value.

Delay is the amount of time relative to the trigger event to display on the grid. In Real Time sampling mode, the trigger event is placed at time zero on the grid. Delay may be time pre-trigger, entered as a negative value, or post-trigger, entered as a positive value. Raising/lowering the Delay value has the effect of shifting the trace to the right/left, enabling you to focus on the relevant portion of longer acquisitions.

Set to Zero returns Delay to zero.

Real Time Memory

Maximum Points is the maximum number of samples taken per acquisition. The actual number of samples acquired can be lower due to the current Sample Rate and Time/Division settings.

Sampling Modes

Real Time Sampling Mode

Real Time sampling mode is a series of digitized voltage values sampled on the input signal at a uniform rate. These samples are displayed as a series of measured data values associated with a single trigger event. By default, the waveform is horizontally positioned so that the trigger event is time zero on the grid.

The relationship between sample rate, memory, and time can be expressed as:

Capture Interval = 1/Sample Rate X Memory Capture Interval/10 = Time Per Division

In Real Time sampling mode, the acquisition can be displayed for a specific period of time (or number of samples) either before or after the trigger event occurs, known as trigger delay. This allows you to isolate and display a time/event of interest that occurs before or after the trigger event.

- **Pre-trigger delay** displays the time prior to the trigger event. This can be set from a time well before the trigger event to the moment the event occurs, up to the oscilloscope's maximum sample record length. How much actual time this represents depends on your timebase setting. When set to the maximum allowed pre-trigger delay, the trigger position (and zero point) is off the grid (indicated by the trigger delay arrow at the lower right corner), and everything you see represents pre-trigger time.
- **Post-trigger delay** displays time following the trigger event. Post-trigger delay can cover a much greater lapse of time than pre-trigger delay, up to the equivalent of 10,000 time divisions after the trigger event occurred. When set to the maximum allowed post-trigger delay, the trigger point may actually be off the grid far to the left of the time displayed.

Usually, on fast timebase settings, the maximum sample rate is used when in Real Time mode. For slower timebase settings, the sample rate is decreased so that the maximum number of data samples is maintained over time.

Sequence Sampling Mode

In Sequence Mode, the complete waveform consists of a number of fixed-size segments (see the instrument specifications at teledynelecroy.com for the limits). The oscilloscope uses the sequence timebase setting to determine the capture duration of each segment as 10 x time/div. With this setting, the oscilloscope uses the desired number of segments, maximum segment length, and total available memory to determine the actual number of samples or segments, and time or points.

Sequence Mode is ideal when capturing many fast pulses in quick succession or when capturing few events separated by long time periods. The instrument can capture complicated sequences of events over large time intervals in fine detail, while ignoring the uninteresting periods between the events. You can also make time measurements between events on selected segments using the full precision of the acquisition timebase.

SET UP SEQUENCE MODE

When setting up Sequence Mode, you define the number of fixed-size segments acquired in single-shot mode (see the instrument specifications for the limits). The oscilloscope uses the sequence timebase setting to determine the capture duration of each segment. Along with this setting, the oscilloscope uses the number of segments, maximum segment length, and total available memory to determine the actual number of samples or segments, and time or points.

TimeBase Sequence		😵 CLOSE
Acquisition Settings Number of Segments	Sequence Timeout Timeout Enable Timeout 100,0000 s	Show Sequence Trigger Times
	Following valid trigger of first segment, use sequence timeout to automatically interrupt the sequence acquisition if the timeout value is exceeded without a valid trigger.	Use Zoom traces to select segments viewed and processed.

- 1. From the menu bar, choose Timebase > Horizontal Setup....
- 2. Choose Sequence Sampling Mode.
- 3. On the Sequence tab under Acquisition Settings, touch Number of Segments and enter a value.
- 4. To stop acquisition in case no valid trigger event occurs within a certain timeframe, check the **Enable Timeout** box, then touch **Timeout** and provide a timeout value.

NOTE: While optional, Timeout ensures that the acquisition will complete in a reasonable amount of time and control of the oscilloscope will return to the operator/controller without having to manually stop the acquisition.

5. Touch the one of the front panel Trigger buttons to begin acquisition.

NOTE: Once acquisition has started, you can interrupt it at any time by pressing the **Stop** front panel button. In this case, the segments already acquired will be retained in memory.

VIEW SEGMENTS IN SEQUENCE MODE

When in Sequence Mode, you can view individual segments easily using the **Zoom dialog**. The Zoom trace defaults to Segment 1. You can move to later segments by changing the values in **First** segment to display and **Num**(ber) of segments to display at once.

TIP: By changing the Num field value to 1, you can use the front panel Adjust knob to scroll through each segment in order.

Channel descriptor boxes indicate the total number of segments acquired. Zoom descriptor boxes show the number of segments displayed. As with all other Zoom traces, the zoomed segments are highlighted on the source trace.

C1	DC50	Z1	zoom(C1)
	1.00 mV/div		500 µV/div
	0 µV offset		1.00 µs/div
	8 Seg		5 Seg

Use the Zoom controls to change the scale factors of the trace.

Roll Mode

Roll mode displays, in real time, incoming points in single-shot acquisitions that appear to "roll" continuously across the screen from right to left until a trigger event is detected and the acquisition is complete. The parameters or math functions connected to each channel are updated every time the roll mode buffer is updated, as if new data is available. This resets statistics on every step of Roll mode that is valid because of new data.

Timebase must be set to 100 ms/div or slower to enable Roll mode selection. Roll mode samples at \leq 5 MS/s.

NOTE: If the processing time is greater than the acquire time, the data in memory is overwritten. In this case, the instrument issues the warning, "Channel data is not continuous in ROLL mode!!!" and rolling starts again.

RIS Sampling Mode

RIS (Random Interleaved Sampling) allows effective sampling rates higher than the maximum single-shot sampling rate. It is used on repetitive waveforms with a stable trigger. The maximum effective RIS sampling rate is achieved by making multiple single-shot acquisitions at maximum real-time sample rate. The bins thus acquired are positioned approximately 20 ps (50 GS/s) apart. The process of acquiring these bins and satisfying the time constraint is a random one. The relative time between ADC sampling instants and the event trigger provides the necessary variation.

The instrument requires multiple triggers to complete an acquisition. The number depends on the sample rate: the higher the sample rate, the more triggers are required. It then interleaves these segments (as shown in the following illustration) to provide a waveform covering a time interval that is a multiple of the maximum single-shot sampling rate. However, the real-time interval over which the instrument collects the waveform data is much longer, and depends on the trigger rate and the amount of interleaving required.

Interleaving of sample in RIS sampling mode.

Average Sampling Mode

Average sampling mode calculates the average value for each captured point over a specified number of acquisitions (2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 sweeps are all available). Each individual acquisition uses Real Time mode and the results are averaged together. Average mode can be used to reduce random noise in repeating signals.

When selecting Average sampling mode, also select the number of Sweeps to calculate in the Average.

The Max Memory Length you can set for Average sampling mode is 10 kpts. This limit applies only to the hardware acquisition system. You can apply the Average math function to larger acquisitions.

History Mode

History Mode allows you to review any acquisition saved in the oscilloscope's history buffer, which automatically stores all acquisition records until full. Not only can individual acquisitions be restored to the grid, you can "scroll" backward and forward through the history at varying speeds to capture individual details or changes in the waveforms over time.

Each record is indexed and time-stamped, and you can choose to view the absolute time of acquisition or the time relative to when you entered History Mode. In the latter case, the last acquisition is time zero, and all others are stamped with a negative time. The maximum number of records stored depends on your acquisition settings and the size of the oscilloscope memory.

To view history:

- 1. Choose Timebase > History Mode.
- 2. Press the front panel History Mode button, or choose Timebase > History Mode.
- 3. Select **View History** to enable the history display, and **View Table** to display the index of records. Optionally, select to show **Relative Times** on the table.

4. Choose a single acquisition to view by entering its **Index** number on the dialog or selecting it from the table of acquisitions.

OR

Use the Navigation buttons to "scroll" the history of acquisitions.

- The top row of buttons scrolls continuously and are (left to right): Fast Backward, Slow Backward, Pause, Slow Forward, Fast Forward.
- The bottom row of buttons steps one record at a time and are (left to right): Back to Start, Back One, Go to Index (#), Forward One, Forward to End.
- 5. Entering History Mode automatically stops new acquisitions. To leave History Mode, press the History Mode button again, or restart acquisition by pressing one of the front panel Trigger Mode buttons.

Trigger

While the oscilloscope is continuously sampling signal when it is turned on, it can only display up to its maximum memory in data samples. Triggers select an exact event/time in the waveform to display on the oscilloscope screen so that memory is not wasted on insignificant periods of the signal. For all trigger types, you can set:

- Pre-trigger or post-trigger delay-time relative to the trigger event displayed on screen (although the trigger itself may not be visible).
- Time between sweeps-how often the display is refreshed.

Unless modified by a pre- or post-trigger delay, the trigger event occurs at point zero at the center of the grid, and an equal period of time before and after this point is shown to the left and right of it.

In addition to the trigger type, the trigger mode determines how the oscilloscope behaves in the presence or absence of a trigger event.

Trigger Modes

The trigger mode determines how the oscilloscope sweeps, or refreshes, the display. This can be set from the Trigger menu or from the front panel Trigger control group.

Auto mode causes the oscilloscope to sweep without a set trigger. An internal timer triggers the sweep after a preset timeout period so that the display refreshes continuously. Otherwise, Auto functions the same as Normal when a trigger condition is found.

In **Normal** mode, the oscilloscope sweeps only if the input signal reaches the set trigger point. Otherwise it continues to display the last acquired waveform.

In **Single** mode, one sweep occurs each time you choose **Trigger > Single** or press the front panel **Single** button.

Stop pauses sweeps until you select one of the other three modes.

Trigger Types

These are the trigger types available for selection. If the trigger is part of a subgroup (e.g., Smart), first choose the subgroup from among the basic types to display all the trigger options.

Basic Triggers

Edge triggers upon a achieving a certain voltage level in the positive or negative slope of the waveform.

Width triggers upon finding a positive- or negative-going pulse width when measured at the specified voltage level.

Pattern triggers upon a user-defined pattern of concurrent high and low voltage levels on selected inputs. In Mixed-Signal oscilloscopes, it may be a digital logic pattern relative to high and low voltage levels on analog channels, or just a digital logic pattern omitting any analog inputs. Likewise, if your oscilloscope does not have digital input capability, the pattern can be set using voltage levels on analog channels alone. You can stipulate the voltage level/logic threshold for each analog or digital input independently.

TV triggers on a specified line and field in standard (PAL, SECAM, NTSC, HDTV) or custom composite video signals.

Qualified arms the trigger on the A event, then fires on the B event. In Normal trigger mode, it automatically resets after the B event. The A event can be an Edge, State, Pattern, or PatState (a pattern that persists over a user-defined number of events or time). The options for the B event depend on the type of A event. If A is a digital Pattern or PatState, B can only be an Edge.

NOTE: This functionality is identical to Teledyne LeCroy's previous Qualify and State triggers, but presented through a different user interface.

Smart Triggers

The Smart subgroup triggers allow you to apply Boolean logic conditions to the basic signal characteristics of level, slope, and polarity to determine when to fire the trigger.

Window triggers when a signal exits a window defined by voltage thresholds.

Interval triggers upon finding a specific interval, the time (period) between two consecutive edges of the same polarity: positive to positive or negative to negative. Use the interval trigger to capture intervals that fall short of, or exceed, a specified range.

Dropout triggers when a signal loss is detected. The trigger is generated at the end of the timeout period following the last trigger source transition. It is used primarily in single-shot applications with a pre-trigger delay.

Runt triggers when a pulse crosses a first threshold, but fails to cross a second threshold before re-crossing the first. Other defining conditions for this trigger are the edge (triggers on the slope opposite to that selected) and runt width.

SlewRate triggers when the rising or falling edge of a pulse crosses an upper and a lower level. The pulse edge must cross the thresholds faster or slower than a selected period of time.

Serial Triggers

The **Serial** trigger type will appear if you have installed protocol-specific serial data trigger and decode options. Select this type to open the serial trigger setup dialogs. Instructions for using all serial data options are available from our website at teledynelecroy.com/serialdata.

Setting Up Triggers

To access the Trigger setup dialogs, do one of the following:

- Choose Trigger > Trigger Setup from the menu bar
- Press the front panel Trigger Setup button
- Touch the Trigger descriptor box

The main Trigger dialog contains the <u>trigger type</u> selections. On oscilloscopes with the Mixed Signal option, many trigger types can be set on either analog channels, including the External Trigger input, or digital lines.

Other controls will appear depending on the trigger type selection (e.g., Slope for Edge triggers). These are described in the set up procedures for each trigger.

The trigger condition is summarized in a preview window at the far right of the Trigger dialog. Refer to this to confirm your selections are producing the trigger you want.

Edge Trigger

Edge triggers upon a achieving a certain voltage level in the positive or negative slope of the waveform. It is the default trigger selection on standard oscilloscopes.

On the Trigger dialog, select Edge trigger type to display the controls.

ANALOG EDGE

- 1. Choose the **Source** signal input.
- 2. Enter the voltage Level upon which to trigger.

The Find Level button sets the Level to the signal mean.

- 3. Choose the Slope (edge) of the wave on which to trigger.
- 4. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. For stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz (used for triggering on low frequencies).

Trigger	Holdoff			🙁 CLOSE
Type Edge Pattern Serial	Width Qualified	Setup Source Level 1.50 V × Logic Family TTL ▲	Slope Positive Negative	Trigger on positive edge

DIGITAL EDGE

- 1. Choose the **Source** digital line.
- 2. Choose the Slope (edge) upon which to trigger.
- 3. Choose the **Logic Family** that marks the High-Low logic threshold. To enter a custom threshold, choose Logic Family User Defined and enter the voltage **Level**.

NOTE: The Logic Family will default to any Logic Setup associated with that line in a previous digital group setup.

Width Trigger

Width triggers upon finding a positive- or negative-going pulse width when measured at the specified voltage level.

On the Trigger dialog, select Width trigger type to display the controls.

ANALOG WIDTH

- 1. Choose the Source input.
- 2. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. Best used for stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz. Best used for triggering on low frequencies.
- 3. Choose the Polarity at which to measure pulse width.
- 4. Enter the voltage **Level** at which to measure pulse width. The Find Level button sets the level to the signal mean.
- 5. Use **Width Condition is** settings to create an expression describing the triggering pulse width. This may be:
 - Any width Less Than an Upper Value.
 - Any width Greater Than a Lower Value.
 - Any width In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Value and Lower Value.
 - Delta, any Nominal width plus or minus a Delta width.

DIGITAL WIDTH

Trigger						🙁 CLOSE
Туре		Setup	Level	Width Condition is		
Edge Pattern	Width Qualified	Do Source	Logic Family	Less Than	-] -E-	
Serial				6 ns	er Value ▲	Trigger at end of a positive pulse when pulse width
		Polarity Positive		w±s Delta Low		is less than specified limit.

- 1. Choose the **Source** input line.
- 2. Choose the line Polarity at which to measure pulse width.
- 3. Choose the **Logic Family** that marks the High-Low logic threshold. To enter a custom threshold, choose Logic Family User Defined and enter the voltage **Level**.

NOTE: The Logic Family will default to any Logic Setup associated with that line in a previous digital group setup.

- 4. Use **Width Condition is** settings to create an expression describing the triggering pulse width. This may be:
 - Any width Less Than an Upper Value.
 - Any width Greater Than a Lower Value.
 - Any width In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Value and Lower Value.
 - Delta, any Nominal width plus or minus a Delta width.

Qualified Trigger

Qualified arms the trigger on the A event, then fires on the B event. In Normal trigger mode, it automatically resets after the B event. The options for the B event depend on the type of A event. You may apply additional Holdoff by time or number of events.

On the Trigger dialog, select **Qualified** trigger type to display the controls.

Besides an Edge level, the arming ("A") event may be a State, any voltage measured above or below a threshold Level.

Once you've selected the A and B events on the Qualified dialog, set up the conditions on the respective subdialogs exactly as you would a single-stage trigger.

Pattern Trigger

Pattern is the default trigger when the digital leadset is connected to the oscilloscope, as these users generally wish to find and trigger upon digital logic patterns.

However, a Pattern trigger can also be set on a user-defined pattern of High or Low voltage levels in analog channels (including the External Trigger input), or a combination of digital and analog patterns when Mixed Signal capabilities are available.

On the Trigger dialog, select Pattern trigger type. Open the Digital Pattern dialog to display the controls.

DIGITAL PATTERN

Trigger	Digital	Pattern	Levels												😣 CLOSE
							Hex					ime Con	dition is		
And	Nand	C1-D8	D7	D6	D5	D4	XX _	D2	D1	D0		<	>	··E3··	-3-6-
Or	Nor	•	X	X	X	X	×	X	×	X	►	Greater	Than	Upper	
> -		C1		15		D8	D7		DO		0-1	t¿₩ <tu< td=""><td></td><td>6 ns</td><td>Value</td></tu<>		6 ns	Value
			××						XXX		Set all to	W±S		4 ns	4

- 1. Open the Digital Pattern dialog.
- 2. To apply a digital logic pattern, either:
 - Enter the hexadecimal value of the pattern in **Hex**. Lines will take a logical 1, 0, or X ("Don't Care") according to the pattern.
 - Touch the **Dx button** for each active line, and select whether it must be High or Low compared to the logic threshold. Depending on your selection, a logical 1 (High) or 0 (Low) now appears on the dialog. Leave X selected for any line you wish to exclude from the pattern. Use the Left and Right Arrow buttons to display lines in other digital banks.

NOTE: As an alternative to a digital logic pattern, you may set edge conditions on any line. Touch the **Dx button** and choose the edge. Edge conditions always assume a logical OR in the overall trigger criteria.

TIP: As you work, the checkboxes along the bottom of the dialog will change to show the pattern. You can also use these checkboxes to make selections.

3. If you have not already set a logic threshold, open the **Levels dialog** and select a **Logic Family** for each digital bank from which you've selected lines. To set a custom logic threshold, choose Logic Family User Defined, then enter the **Threshold** voltage and **Hysteresis**.

NOTE: Digital lines inherit the Logic Setup made when defining digital groups. However, you can change the logic threshold on the Levels dialog, as well. The two settings are linked; they will always reflect whatever was last selected on either dialog. Logic thresholds can only be set per lead bank, not individual line.

ANALOG PATTERN

Mixed Signal Dialogs

On oscilloscopes with the MSO option, you can use the Digital Pattern dialog to set an analog pattern, as well.

1. To add the analog pattern to the digital pattern, leave your digital pattern as is and skip to step 2.

To create an analog-only pattern, touch **Set All To...** and select **Don't Care**. This will eliminate any meaningful digital pattern and activate all the Boolean operators.

- 2. Touch the **Left Arrow** button until the C1-EXT group of inputs is displayed in the main section of the dialog.
- 3. Touch the **Cx button** for each input to be included in the pattern, and select whether it must be High or Low compared to the threshold Level you will set.

Depending on your selection, a logical 1 (High) or 0 (Low) now appears on the dialog. Leave Don't Care ("X") selected for any input you wish to exclude.

4. Select the Boolean operator (AND, NAND, OR, or NOR) that describes the relationship among inputs (e.g., C1 must be High AND C2 must be Low).

NOTE:Only the AND operator is available when combining analog and digital patterns. In the example above, all digital lines have been set to Don't Care ("X"), so all operators are available.

5. Open the Levels dialog and enter the voltage threshold for each input included in the trigger.

Standard Dialogs

The standard dialog for setting up an analog Pattern trigger includes all the controls for setting the pattern and the voltage threshold on the same dialog.

Trigger	Pattern						🙁 CLOSE
Operator		CHANNEL 1	CHANNEL 2	CHANNEL 3	CHANNEL 4	Time Condition is	
And	Nand	State Don't Care	State Don't Care	State _Don't Care	State Don't Care	Greater Than	
Or	Nor					t≮w≺tu Limits Upper Value 6 ns×	
		Triggers when Patte All inputs set to DC		ions from false to tru	le	w±s Delta Lower Value	

- 1. Select the Boolean **Operator** (AND, NAND, OR, or NOR) that describes the relationship among analog inputs (e.g., C1 must be High NAND C2 must be Low).
- 2. For each input to be included in the trigger pattern, and select what **State** it must be in (High, Low, or Don't Care) compared to the threshold Level you will set. Leave "Don't Care" selected for any input you wish to exclude.
- 3. For each input included in the trigger, enter the voltage threshold Level.
- 4. Use **Time Condition is** settings to specify how long the pattern must persist for the trigger to fire. This may be:
 - Any time Less Than an Upper Value.
 - Any time Greater Than a Lower Value.
 - Any time In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Value and Lower Value.
 - Delta, any Nominal width plus or minus a Delta width.

TV Trigger

TV triggers on a specified line and field in standard (PAL, SECAM, NTSC, HDTV) or custom composite video signals.

On the Trigger dialog, select **TV** trigger type to display the controls.

Trigger				🙁 CLOSE
Type Edge Pattern Serial	Width Qualified	TV Standard NTSC Frame Rate # of Fields 60Hz × 4 × # of Lines Interlace 525 × 2 ⁻¹ ×	Trigger On ✓ trigger on Line ANY Line 1 Field 1 Level 0.0 mV	TV Trigger on Negative Edge

- 1. Choose the **Source** signal input.
- 2. Choose the signal **TV Standard**. To use a custom signal, also enter the:
 - Frame Rate
 - # of Fields per line
 - # of Lines
 - Interlace ratio
- 3. Choose the Line and Field upon which to trigger.

Window Trigger

Window triggers when a signal exits a window defined by voltage thresholds.

On the Trigger dialog, select **Smart** trigger type, then choose **Window** to display the controls.

Trigger						🙁 CLOSE
Type Edge Pattern	Width Qualified	Smart Type Window Interval	Setup Source C1	Levels Absolute Relative	Nominal Level 0.0 mV	Trigger when the signal
Serial		SlewRate			Find Levels	leaves the window region

- 1. Choose the **Source** signal input.
- 2. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. For stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz (used for triggering on low frequencies).
- 3. Choose to define the window using Absolute or Relative voltage levels.
- 4. If Absolute, enter the voltage Upper Level and Lower Level.

If Relative, enter a Nominal Level plus or minus a Delta voltage.

Interval Trigger

Interval triggers upon finding a specific interval, the time (period) between two consecutive edges of the same polarity: positive to positive or negative to negative. Use the interval trigger to capture intervals that fall short of, or exceed, a specified range.

On the Trigger dialog, select Smart trigger type, then Interval to display the controls.

ANALOG INTERVAL

Trigger						🙁 CLOSE
Туре		Smart Type	Setup	Level	Interval Condition is	
Edge	Width Qualified	Window Interval	Source			
			C1 🖌			
Pattern	TV Smart	Dropout Runt			Less Than	
	M 🗌 💮		Coupling	Level	Upper In	terval Trigger on second
			DC 🖌	0.0 mV	t¿w <t。limits 6="" ns<="" td=""><td>positive edge when the</td></t。limits>	positive edge when the
Serial		SlewRate				time between the
			Slope	Find	w±s Delta	euges is less than the
			Positive 🖌	Level		specified interval.

- 1. Choose the **Source** input.
- 2. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. For stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz (used for triggering on low frequencies).
- 3. Choose the Slope (edge) from which to measure.
- 4. Enter the voltage **Level** at which to measure interval width. Where available, the Find Level button sets the level to the signal mean.
- 5. Use Interval Condition is settings to create an expression describing the triggering interval. This may be:
 - Any width Less Than an Upper Value.
 - Any width Greater Than a Lower Value.
 - Any width In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Value and Lower Value.
 - Delta, any Nominal width plus or minus a Delta width.

DIGITAL INTERVAL

Trigger						😢 CL03
Туре		Smart Type	Setup	Level	Interval Condition is	
Edge	Width Qualified	Window Interval	D0	Logic Family	< >+·	
Pattern	TV Smart	Dropout Runt			Less Than	A
					Upper In د t¿w <tu <mark="" limits="">6 ns</tu>	Interval Trigger on second positive edge when the
Serial		SlewRate	Slope Positive		w±s Delta Lower I 4 ns	Interval time between the edges is less than the specified interval.

- 1. Choose the **Source** input line.
- 2. Choose the Slope (edge) from which to measure.
- 3. Choose the **Logic Family** that marks the High-Low logic threshold. To enter a custom threshold, choose Logic Family User Defined and enter the voltage **Level**.

NOTE: The Logic Family will default to any Logic Setup associated with that line in a previous digital group setup.

- 4. Use Interval Condition is settings to create an expression describing the triggering interval. This may be:
 - Any width Less Than an Upper Value.
 - Any width Greater Than a Lower Value.
 - Any width In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Value and Lower Value.
 - Delta, any Nominal width plus or minus a Delta width.

Dropout Trigger

Dropout triggers when a signal loss is detected. The trigger is generated at the end of the timeout period following the last edge transition that meets the trigger conditions. It is used primarily in single-shot applications with a pre-trigger delay.

On the Trigger dialog, select Smart trigger type, then Dropout to display the controls.

ANALOG DROPOUT

- 1. Choose the Source signal input.
- 2. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. For stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz (used for triggering on low frequencies).
- 3. Choose the **Slope** (edge) and enter the voltage **Level** to watch for transitions. Where available, the **Find Level** button sets the Level to the signal mean.
- 4. Under **Dropout Condition is...**, enter the time interval after which to trigger if no transition occurs at that Slope and Level.

DIGITAL DROPOUT

Trigger						🙁 CLOSE
Туре		Smart Type	Setup	Level	Dropout Condition is	
Edge	Width Qualified	Window Interval	Source	Logic Family		k- k- k
$\int \int$					Trigger after timeout,	
				<u> </u>	if NO edge within	
Pattern	TV Smart	Dropout Runt		Level	. 25.0 ns	
						Trigger when signal
					Ignore Opposite Edge	disappears for longer than
Serial		SlewRate	Slope		··	Dropout value.Ignore last rising
		Ĭ	Positive		с 🗹 з	. Edge

- 1. Choose the **Source** digital line.
- 2. Choose the **Slope** (edge) to watch for transitions.
- 3. Choose the **Logic Family** that marks the transition threshold. To enter a custom threshold, choose Logic Family User Defined and enter the voltage **Level**.

NOTE: The Logic Family will default to any Logic Setup associated with that line in a previous digital group setup.

4. Under **Dropout Condition is...**, enter the time interval after which to trigger if no transition occurs at that Slope and Level.

Runt Trigger

Runt triggers when a pulse crosses a first threshold, but fails to cross a second threshold before re-crossing the first. Other defining conditions for this trigger are the polarity and runt interval (width).

On the Trigger dialog, select Smart trigger type, then choose Runt to display the controls.

- 1. Choose the **Source** input.
- 2. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. For stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz (used for triggering on low frequencies).
- 3. Choose the **Polarity** on which to measure.
- 4. Enter the voltage crossing **Upper Level** and **Lower Level**. Where available, the Find Level button sets the levels to the positive and negative signal mean.
- 5. Use **Time Condition is** settings to create an expression describing the runt interval (width). This condition is in addition to (AND) the voltage crossing levels. The interval may be:
 - Any width Less Than an Upper Interval.
 - Any width Greater Than a Lower Interval.
 - Any width In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Interval and Lower Interval.
 - Delta, any Nominal width plus or minus a Delta width.

SlewRate Trigger

SlewRate triggers when the rising or falling edge of a pulse crosses an upper and a lower level. The pulse edge must cross the thresholds faster or slower than a selected period of time.

On the Trigger dialog, select Smart trigger type, then Slew Rate to display the controls.

Trigger					🗴 CLOSE
Type Edge Width Qualified Image: product of the state of the s	SlewRate	Setup Source C1 Coupling DC Slope Positive	Levels Upper Level 50.0 mV Lower Level 50.0 mV Find Levels	Time Condition is Image: Condition is Image: Condition is Less Than Upper Interval tcwktu Limits W±s Delta Lower Interval 4.0 ns x	Trigger when a rising edge crosses two thresholds inside or outside a selected time range

- 1. Choose the **Source** input.
- 2. Choose the type of signal **Coupling** at the input. Choices are:
 - **DC** All the signal's frequency components are coupled to the trigger circuit for high frequency bursts or where the use of AC coupling would shift the effective trigger level.
 - AC The signal is capacitively coupled. DC levels are rejected, and frequencies below 10 Hz are attenuated.
 - LFREJ The signal is coupled through a capacitive high-pass filter network, DC is rejected and signal frequencies below 400 kHz are attenuated. For stable triggering on medium to high frequency signals.
 - **HFREJ** Signals are DC coupled to the trigger circuit, and a low-pass filter network attenuates frequencies above 1 MHz (used for triggering on low frequencies).
- 3. Choose the **Slope** (edge) from which to measure.
- 4. Enter the voltage crossing **Upper Level** and **Lower Level**. Where available, the Find Level button sets the level to the positive and negative signal mean.
- 5. Use **Time Condition is** settings to create an expression describing the interval within which both levels must be crossed. This may be:
 - Any time Less Than an Upper Value.
 - Any time Greater Than a Lower Value.
 - Any time In Range or Out Range of values. You may describe the range using either:
 - Limits, an absolute Upper Value and Lower Value.
 - Delta, any Nominal width plus or minus a Delta width.

Trigger Holdoff

Holdoff is an additional condition that may be set for Edge and Pattern triggers. It can be expressed either as a period of time or an event count. Holdoff disables the trigger temporarily, even if the trigger conditions are met, until the holdoff conditions are also met. The trigger fires when the holdoff has elapsed.

Use holdoff to obtain a stable trigger for repetitive, composite waveforms. For example, if the number or duration of sub-signals is known, you can disable them by choosing an appropriate holdoff value. Qualified triggers operate using conditions similar to holdoff.

Hold Off by Time

This is a period of time to wait to fire the trigger, either since the beginning of the acquisition or since the trigger conditions were met.

Sometimes you can achieve a stable display of complex, repetitive waveforms by placing a holdoff condition on the time between each successive Edge trigger event. This time would otherwise be limited only by the input signal, the coupling, and the instrument's bandwidth. Select a positive or negative slope, and a minimum time between triggers.

In the figure below, the bold edges on the trigger source indicate that a positive slope has been selected. The broken upward-pointing arrows indicate potential triggers, which would occur if other conditions are met. The bold arrows indicate where the triggers actually occur when the holdoff time has been exceeded.

Edge trigger with holdoff by time.

Hold Off by Events

For purposes of Hold Off, Events refers to the number of times the trigger conditions have been met, counted either from the beginning of the acquisition or since the last trigger. For example, if the hold-off number of Events is 2 counted from the beginning of the acquisition, the trigger fires on the third event.

In the figure below, the bold edges on the trigger source indicate that a positive slope has been selected. The broken, upward-pointing arrows indicate potential triggers, while the bold ones show where triggers actually occur after the holdoff expires.

Edge trigger with holdoff by events.

Holdoff Settings

To access the Trigger Holdoff dialog, choose **Triggers > Trigger Setup** from the menu bar or press the front panel Trigger Setup button, then touch the **Holdoff tab**.

Trigger Holdoff		CLOSE
Holdoff by None Events Time	Starts Holdoff Counter on : Acquisition Start	
_ 50.0 ns Events×	Last Trigger time	Trigger on positive edge with Holdoff by Time

Choose to Holdoff by Time (clock) or Event. None disables Holdoff.

- If using Holdoff by Time, enter the Time in S to wait before triggering.
- If using Holdoff by Events, enter the number of Events to count before triggering.

Choose to Start Holdoff Counter On either:

- Acquisition Start, best for single-shot acquisitions.
- Last Trigger Time, best for acquiring repetitive waveforms.

Display

Display settings affect the number and style of grids that appear on screen and some of the visual characteristics of traces, such as persistence.

Display Settings

To access the Display dialogs, choose Display > Display Setup or Display > Persistence Setup.

Grid

Select one of the grid types:

Auto, the default, automatically adds or deletes grids as you open or close traces, up to the maximum number supported.

Single displays a single grid shared by all traces.

XY displays an XY type trace instead of a traditional voltage/time trace.

XY Single displays a single grid with an XY trace next to it.

To dim or brighten the background grid lines, touch Grid Intensity and enter a value from 0 to 100.

Check **Axis labels** to display the voltage values associated with the top and bottom grid lines (calculated from Volts/div) and the time associated with the extreme left and right grid lines (calculated from the Time/div).

Trace

XY

XY displays plot the phase shift between otherwise identical signals. They can be used to display either voltage or frequency on both axes, each axis now corresponding to a different signal input, rather than a different parameter. The shape of the resulting pattern reveals information about phase difference and frequency ratio.

NOTE: The inputs can be any combination of channels, math functions, or memories, but both sources must have the same X-axis scale.

If you choose to display an XY grid, select the source channels to Input X and Input Y.

Persistence

The Persistence feature retains waveform traces on the display for a set amount of time before allowing them to gradually "decay," similar to the display of old phosphor screen oscilloscopes. Use Persistence to accumulate on-screen points from many acquisitions to see your signal change over time. The persistence modes show the most frequent signal path in three-dimensional intensities of the same color (Analog), or graded in a spectrum of colors (Color). You can show persistence for any channel, math function, or memory.

Access the Persistence dialog by choosing **Display > Persistence Setup**. Check **Persistence On** to shown persistence, then select the mode, saturation level, persistence time, and last trace display.

Display Persistence			🙁 CLOSE
Persistence On ✓ └ J	Color Analog	Saturation 50 % Persistence Time Infinite Show Last Trace	

Persistence Mode

The Persistence display is generated by repeated sampling of the amplitudes of events over time, and the accumulation of the sampled data into display maps. These maps create an analog-style display. Statistical integrity is preserved because the duration (decay) is proportional to the persistence population for each amplitude or time combination in the data.

In **Analog Mode**, as a persistence data map develops, different intensities of the same color are assigned to the range between a minimum and a maximum population. The maximum population automatically gets the highest intensity, the minimum population gets the lowest intensity, and intermediate populations get intensities in between these extremes. The information in the lower populations (for

example, down at the noise level) could be of greater interest to you than the rest. The Analog persistence view highlights the distribution of data so that you can examine it in detail.

Color Mode persistence works on the same principle as Analog persistence, but instead uses the entire color spectrum to map signal intensity: violet for minimum population, red for maximum population. In this mode, all traces use all colors, which is helpful for comparing amplitudes by seeking like colors among the traces.

Other Persistence Settings

Besides the different modes, you can select a **Saturation** level as a percentage of the maximum population. All populations above the saturation population are then assigned the highest color intensity: that is, they are saturated. At the same time, all populations below the saturation level are assigned the remaining intensities. Data populations are dynamically updated as data from new acquisitions is accumulated. A saturation level of 100% spreads the intensity variation across the entire distribution; at lower saturation levels the intensity will saturate (become brighter) at the percentage value specified. Lowering this percentage causes the pixels to be saturated at a lower population and makes visible those events rarely seen at higher saturation levels.

Persistence Time is the duration of time (in seconds) after which persistence data is erased from the display.

Choose to superimpose the last waveform over the persistence display by selecting Show Last Trace .

Cursors

Cursors are markers (lines or cross-hairs) that identify specific voltage and time values on the waveform. Use cursors to make fast, accurate measurements of specific points in the waveform. There are three, standard cursor types available.

Vertical (amplitude) cursor readouts appear the descriptor box for the trace; Horizontal (time) cursor readouts appear below the Timbebase descriptor box.

🛱 File 🎗 Ve	ertical	⇔ Timebas	se Trigge	r 🖻 Display	🗶 Curso	rs 🛛 🗈 Meas	sure 🛛 🖬 Math	🗠 Analysis	🛪 Utilities 🛛 🔒	Support	
						1					
+										· · · ·	
					Te	xt of label					
1 DC1M 5.00 mV/di						•				Timebase 0.0 µs	Trigger C1 Auto 20.40
100 µV offse 9.90 m	it									800 kS 4.00 GS/s X1= -125.0 ns ΔX=	Edge Pos
10.10 m ¹ y -20.00 m ¹	V									$X2 = 125.0 \text{ ns } 1/\Delta X$	

Cursor Types

Standard Cursors

These cursors can be placed on most any Channel, Memory, Math or Zoom trace.

Horizontal (Time) cursors place vertical lines through a desired point along the horizontal axis.

Vertical (Amplitude) cursors place horizontal lines through a point on the vertical axis.

An option exists to place Horizontal + Vertical cursors together.

Special Cursors

Some cursors are offered only in special circumstances:

- Horizontal (Frequency) cursors look the same as Horizontal (Time) cursors except that they are placed on waveforms that have frequency on the x-axis, such as FFTs.
- Horizontal (Event) cursors are placed only on Trend waveforms.

In addition, some optional software packages provide cursors and help markers that are specific to the application.

Cursor Settings

Display Cursors

To quickly turn on/off cursors, either:

- From the menu bar, choose **Cursors** then select the desired cursor type from the drop-down list.
- On the front panel, press the **Cursor Type** button repeatedly to cycle through all the cursor types. Stop when the desired type is displayed.

Position Cursors

Te easiest way to position a cursor is to touch and drag the cursor line to a new position.

Alternatively, with the cursor on, turn the front panel **Cursors** knob. If there is more than one cursor line, push the Cursor knob until the correct line is selected, then turn the knob to move it.

Use the Position data entry controls on the Standard Cursors dialog to place cursors precisely.

Standard Cursors Dialog

These controls can be used instead of the front panel controls to set cursors or to refine the cursor setup. Access the dialog by choosing **Cursors > Cursors Setup** from the menu bar.

Sta	andard Cursors				🙁 CLOSE
Cur	rsor Type			Position	
		Line and all	Horizontal	Y7 _2.00 div _₄	
. 1	Off	Horizontal (Time)	+ Vertical		
			Verdeur	Find	
. 1	Vertical (Amplitude)			-2.00 div	
				Y2 🔺	

Cursor Type buttons select the type of cursor displayed on the grid. Off disables the cursor display.

The **Position** controls at the right-side of the Standard Cursors dialog display the current cursor location and can be used to set a new location. The options available depend on the Cursor Type settings.

- X1 (negative) and X2 (positive) time from the zero point.
- Y 1 (negative) and Y 2 (positive) number of divisions from the zero level. May be a fraction of a division.
- **Track** locks cursor lines so they move together, maintaining their same relative distance from each other.
- **Find** places the cursor 2.5 divisions (negative or positive) from the tigger point on the first touch. On the second touch, it returns the cursor to its previous position.

Measure

Measurement parameters are tools that give you access to a wide range of waveform properties. Use them to analyze many attributes of your waveform such as rise-time, rms voltage, and peak-to-peak voltage.

You can create a custom set of up to six parameters drawn from all the standard <u>measurements</u>, as well as specialized measurements installed with optional software packages.

Measurement readouts appear in a table below the grid. Readouts can be individually turned on/off. To quickly access the Measure Setup dialog if it is closed, touch any cell of the readout table.

Measurement readout table open below grid showing statistics and histicons.

Measurements can be viewed in graphical format to facilitate your analysis. See Trend.

Setting Up Measurements

To configure custom measurements to add to the table of parameter readouts:

- 1. From the menu bar, choose Measure > Measure Setup.
- 2. Check **Show Table** to display the readout on screen.
- 3. Touch the **Measure button** next to an unused **Px** location (or one that you want to change), then choose the measurement from the pop-up window.

Measure						🔀 CLOSE
	Measurement Selection				Cate	Statistics
Show Table	P1Overshoot	_C1	P4 🕖 None		Default	Statistics On
	P2 Overshoot+	_C1	P5 🕖 None	C1	Start _0.00 div _⊿	Histicons
Clear All Definitions	P3 😥 None	_C1	P6 🕖 None	C1	Stop 10.00 div _⊿	Clear Sweeps

4. For each input required by the measurement, touch Source and select the waveform to be measured.

- 5. Optionally, <u>set a measurement gate</u> by entering the Gate **Start** and **Stop** divisions or dragging the gate posts from the far left and right edges of the grid to reposition them.
- 6. Choose to display Statistics or Histicons on the measurement readout table.

Gating Measurements

By using gates, you can narrow the span of the waveform on which to perform parameter measurements, allowing you to focus on the area of greatest interest. For example, if you "gate" five rising edges of the waveform, the parameter calculations for rise time are performed only on the five pulses bounded by the gate posts.

The default starting positions of the gate posts are 0 div and 10 div, which coincide with the left and right ends of the grid. The gate, therefore, initially encloses the entire waveform.

The quickest way to set a gate is to drag the gate posts located at the far left and right of the grid to the desired positions. You can refine this setting by specifying a position down to hundredths of a division in the **Gate Start** and **Stop** fields on the Measure dialog dialog. All parameters share the same gate.

Touch the **Default** button to return gates to the width of the trace.

Viewing Statistics

You can add the statistical measures **value(last)**, **mean**, **min.**, **max.**, **sdev**, and **num**(ber of measurements computed) to the measurement parameter readout table by checking **Statistics On**. You can also choose **Measure > Statistics** from the menu bar.

The num statistic is the number of measurements computed. For any parameter that computes on an entire waveform (like amplitude, mean, minimum, maximum, etc.) the value displayed represents the number of sweeps.

For any parameter that computes on every event, the value displayed is equal to the number of events per acquired waveform. If *x* waveforms were acquired, the value represents *x* times the number of cycles per waveform. The value(last) statistic is equal to the measurement of the last cycle on the last acquisition.

To reset the statistics counter, touch Clear Sweeps on the display or front panel.

Viewing Histicons

Histicons are miniature histograms of measurement parameters that appear on the measurement table. These thumbnail histograms let you see at a glance the statistical distribution of each parameter. Select the **Histicons** checkbox to turn on histicons.
List of Standard Measurement Parameters

NOTE: There may be additional parameters available depending on the software options installed on the oscilloscope.

Parameter	Description		
Amplitude (ampl)	Measures the difference between upper and lower levels in two-level signals. Differs from pkpk in that noise, overshoot, undershoot, and ringing do not affect the measurement. Amplitude is calculated by using the formula Top – Base. On signals not having two major levels (such as triangle or saw-tooth waves), the amplitude parameter returns the same value as peak-to-peak.		
Area	Integral of data: Computes area of the waveform relative to zero level. Values greater than zero contribute positively to the area; values less than zero, negatively.		
Base	Lower of two most probable states (higher is top). Measures lower level in two-level signals. Differs from min in that noise, overshoot, undershoot, and ringing do not affect measurement. On signals not having two major levels (such as triangle or saw-tooth waves), the amplitude parameter returns the same value as minimum.		
Delay	Time from trigger to transition: Measures time between trigger and first 50% crossing of specifies signal. Delay can be used to measure the propagation delay between two signals by triggering on one and determining delay of other.		
Duty Cycle	Percent of period for which data are above or below the 50% level of the signal.		
Fall 80-20% (fall8020)	Duration of pulse waveform's falling transition from 80% to 20% of the amplitude averaged for all falling transitions between the measurement gates. On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving less predictable results.		
Fall Time (fall)	Duration of pulse waveform's falling transition from 90% to 10% of the amplitude averaged for all falling transitions between the measurement gates. On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving less predictable results.		
Frequency (freq)	Period of cyclic signal measured as time between every other pair of 50% crossings. Starting with first transition after left measurement gate. The period is measured for each transition pair. The reciprocal of each period measurement is calculated as the frequency.		
Maximum (max)	Measures highest point in waveform. Unlike top, does not assume waveform has two levels.		
Mean	Average of data for time domain waveform. Computed as centroid of distribution for a histogram of the data values.		
Minimum (min)	Measures the lowest point in a waveform. Unlike base, does not assume waveform has two levels.		
None	Disables parameter calculation		
Overshoot+	Amount of overshoot following a rising edge specified This is represented as a percentage of amplitude. Overshoot+ is calculated using the formula (max top)/ampl x 100. On signals not having two major levels (triangle or saw-tooth waves, for example), may not give predictable results.		
Overshoot-	Amount of overshoot following a falling edge. This is represented as percentage of amplitude. Overshoot- is calculated using the formula (base - min.)/ampl x 100. On signals not having two major levels (triangle or saw-tooth waves, for example), may not give predictable results.		
Peak to Peak (pkpk)	Difference between highest and lowest points in waveform. Unlike ampl, does not assume the waveform has two levels. Peak to peak is calculated using the formula <i>maximum – minimum</i> .		
Period	The time between every other pair of 50% crossings. Starting with first transition after left measurement gate,		

WaveSurfer 3000 Oscilloscopes

Parameter	Description				
	period is measured for each transition pair, with values averaged to give final result.				
Phase	Phase difference between signal analyzed and signal used as reference. Both signals are measured from the 50% point of their rising edges.				
Rise 20-80% (rise2080)	Duration of pulse waveform's rising transition from 20% to 80% of the amplitude averaged for all rising transitions between the measurement gates. On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving less predictable results.				
Rise Time	Duration of pulse waveform's rising transition from 10% to 90% of the amplitude averaged for all rising transitions between the measurement gates. On signals not having two major levels (triangle or saw-tooth waves, for example), top and base can default to maximum and minimum, giving less predictable results.				
RMS	Root Mean Square of data between the measure gates calculated using the formula: Where: vi denotes measured sample values, and N = number of data points within the periods found up to maximum of 100 periods.				
Skew	Time of clock1 edge minus time of nearest clock2 edge. Both signals are measured from the 50% point of their rising edges.				
Std Dev (sdev)	Standard deviation of the data between the measure gates using the formula: $\sqrt{\frac{1}{N}\sum_{l=1}^{N} (v_l - mean)^2}$ Where: vi denotes measured sample values, and N = number of data points within the periods found up to maximum of 100 periods. This is equivalent to the rms for a zero-mean waveform. Also referred to as AC RMS				
Тор	Higher of two most probable states (base is lower). Measures higher level in two-level signals. Differs from max in that noise, overshoot, undershoot, and ringing do not affect measurement. On signals not having two major levels (such as triangle or saw-tooth waves), the amplitude parameter returns the same value as minimum.				
Width	Width of cyclic signal determined by examining 50% crossings in data input. If first transition after left cursor is a rising edge, waveform is considered to consist of positive pulses and width the time between adjacent rising and falling edges. Conversely, if falling edge, pulses are considered negative and width the time between adjacent falling and rising edges. For both cases, widths of all waveform pulses are averaged for the final result.				
WidthN (widn)	Time of cyclic signal determined by examining 50% crossings in data input. The widthN is measured from falling edge to rising edge.				

Calculating Measurements

Determining Top and Base Lines

Proper determination of the top and base reference lines is fundamental for ensuring correct parameter calculations. The analysis begins by computing a histogram of the waveform data over the time interval spanned by the left and right measurement gates. For example, the histogram of a waveform transitioning in two states will contain two peaks (see figure). The analysis will attempt to identify the two clusters that contain the largest data density. Then the most probable state (centroids) associated with these two clusters will be computed to determine the top and base reference levels: the top line corresponds to the top and the base line to the bottom centroid.

Determining Rise and Fall Times

Once top and base are estimated, calculation of the rise and fall times is easily done (see figure). The appropriate threshold levels are automatically determined by the instrument, using the amplitude (ampl) parameter.

Rising Edge Duration

$$\frac{1}{Mr} \sum_{i=1}^{Mr} (Tr_i^{90} - Tr_i^{10})$$

Falling Edge Duration

Where *Mr* is the number of leading edges found, *Mf* the number of trailing edges found, Tr_i^x the time when rising edge *i* crosses the x% level, Tf_i^x and the time when falling edge *i* crosses the x% level.

Determining Time Parameters

Time parameter measurements such as width, period and delay are carried out with respect to the mesial reference level, located halfway (50%) between the top and base reference lines.

Math

Math traces (F1-F2)) display the result of applying a mathematical operation to a source trace. The output of a math function is always another trace, whereas the output of a measurement parameter is a tabular readout of the measurement.

Math can be applied to any channel (Cx), zoom (Zx), or memory (Mx) trace. It can even be applied to another math trace (Fx), allowing you to chain operations (for example, trace F1 can show the average of C1, while trace F2 provides the integral of F1). Functions such as Trend can be applied to measurement parameters (Px) to plot the history of the measurement.

In addition to the extensive math capabilities that are standard with every oscilloscope, enhanced math analysis tools customized for various industries and applications are offered through optional software packages. To learn about math tools available in each optional package, see the datasheets on the Teledyne LeCroy website at teledynelecroy.com. If you have installed software options, these capabilities are accessed through the oscilloscope Analysis menu, rather than the Math menu, although special measure parameters and math functions will be available when using Measure and Math dialogs.

Setting Up Math Functions

This procedure explains how to set up math function (Fx) traces. Function traces take as input one or more channel, zoom, memory or math traces and output a new math trace.

1. From the menu bar, choose Math > Math Setup.

TIP: If you know which function location you'll be using, you can select **Fx Setup** right from the Math menu.

2. Choose a location by touching one of the Fx tabs.

Math F1 F2	FFT Zoom 🔀 CLOSE
Trace On Source 1 C1 PFT FFT Summary FFT(C1) Actions for trace F1 Measure Store Label Zoom	$\begin{array}{c c} Output type \\ \hline Power Spectrum \\ \hline Window \\ \hline VonHann \\ \hline Transform 524288 pts \\ to 262145 bins \\ \Delta f = 19 Hz \\ \hline Line Impedance \\ 50 \Omega \\ \hline M \end{array}$

- 3. In Operator1, choose the math operation to perform.
- 4. The choice of operator drives the number of **Source** fields you will see displayed. Make a selection in each field.

A **Summary** of the function you are building appears on the dialog. Refer to this to be sure your sources are in the proper order to yield the function you want (e.g., C1-C2 vs. C2-C1).

5. If the operator you've selected has any other configurable settings, you'll see a right-hand dialog of the same name as the operator. Touch the tab to open the dialog and make any further settings. These are explained on the dialog.

There will also be a Zoom dialog where you can optionally adjust the math trace. This does not affect the scale of any other traces.

Enable/Disable Math Function

Once a math function has been created and saved, just use the main Math dialog to quickly enable/disable it.

Math F1 F2		🙁 CLOSE
My Math Functions Use either the button or	F1 On _ FFT(C1)	Reset All
the tab to change the definition of any of the processing functions.	F2 On zoom(C2)	
		Clear Sweeps

Touch the front panel **Math button**, or from the menu bar, choose **Math > Math Setup**, then check the **On** box next to each function you wish to display.

Touch Reset All to erase all functions from their locations.

Touch Clear Sweeps to restart the counter on cumulative functions (like Average).

Adjust Memory or Math Traces

Unlike channel traces, the scale of memory (M1 - M2) or math function (F1 - F2) traces can be adjusted directly without having to create a separate zoom trace. The same set of zoom factor controls used for zoom traces appear on the **Zoom right-hand dialog**, or on one of the trace setup dialogs. This applies to any trace that is created as a math function (F*x*) trace, including traces generated through analysis options and graphs.

List of Standard Math Functions

NOTE: Additional math functions may be available depending on the options installed on the oscilloscope.

Function	Definition		
Absolute	For every point in the waveform the distance away from zero is calculated. For values greater than zero this is the same as the value. For values less than zero, the magnitude of this value without regard to its sign is used.		
Average	Calculates either a summed or continuous average of a selected number of sweeps. See <u>Averaging Waveforms</u> . The maximum number of sweeps is determined by the oscilloscope model and memory. See the specifications at teledynelecroy.com.		
Derivative	Calculates the derivative of adjacent samples using the formula: (next sample value – current sample value) / (horizontal sample interval)		
DIfference	For every point in the waveform, the value of Source2 is subtracted from the value of Source1. Source1 and Source2 must have the same horizontal units and scale and the same vertical units.		
Envelope	Calculates highest and lowest vertical values of a waveform at each horizontal value for a specified number of sweeps.		
FFT	Computes a frequency spectrum with optional Rectangular, Von Hann, Flat Topp, Hamming, Blackman-Harris, and Hanning windows. Calculates up to 1 Mpts. Also allows FFT Averaging through use of a second math operator. See <u>FFT</u> .		
Floor	Calculates the lowest vertical values of a waveform at each horizontal value for a specified number of sweeps.		
Integral	Calculates the linearly rescaled integral (with multiplier and adder) of a waveform input starting from the left edge of the screen using the formula: (current sample value + next sample value) * (horizontal sample interval) Each calculated area is summed with the previous sum of areas. The multiplier and adder are applied before the integration function.		
Invert	For every point in the waveform, the inverse of that point is calculated.		
Product	For every point in the waveform, the value of Source1 is multiplied by the value of Source 2. Source1 and Source2 must have the same horizontal units and scale.		
Ratio	For every point in the waveform, the value of Source1 is divided by the value of Source2. Source1 and Source2 must have the same horizontal units and scale.		
Reciprocal	For every point in the waveform the inverse is calculated using the formula: 1 / (sample value)		
Rescale	For every point in the waveform the sample value is multiplied by the specified multiplier and then add to with the specified adder. See <u>Rescaling and Assigning Units</u> .		
Roof	Calculates the highest vertical values of a waveform at each horizontal value for a specified number of sweeps.		
Sinx/x	Performs10 -to-1 interpolation using a Sin(x)/x filter.		
Square	For every point in the waveform, the square of the sample value is calculated.		
Square Root	For every point in the waveform, the square root of the sample value is calculated.		
Sum	For every point in the waveform, the value of Source1 is added to the value of Source 2.Source1 and Source2 must have the same horizontal units and scale and the same vertical units.		

Function	Definition
Trend	Produces a waveform composed of a series of parameter measurements in the order the measurements were taken. The vertical units are those of the source parameter, the horizontal unit is measurement number. The trend contains a single value for each measurement.
Zoom	Zoom of input source.

Trend

A trend is a waveform composed of a series of parameter measurements in the order the measurements were taken. The vertical units are those of the source parameter, the horizontal unit is measurement number. The trend contains a single value for each measurement.

To rescale the Trend plot, uncheck Auto Find Scale and enter the new Center and Height values.

NOTE: Although the trend plots measurement values, the plot is drawn as a math function and controlled through the Math dialog.

Rescaling and Assigning Units

The rescale function allows you to apply a multiplication factor (*a*) and additive constant (*b*) to your waveform: aX + b. You can do it in the unit of your choice, depending on the type of application.

Set Up Rescaling

- 1. Follow the usual steps to set up a math function, selecting **Rescale** from the **Functions** submenu.
- 2. Touch the **Rescale** right-hand dialog tab.

- 3. To apply a multiplication factor:
 - Check the First multiply by: box and enter a value for *a*, the multiplication factor.
 - Touch then add: and enter a value for *b*, the additive constant.
- 4. To change the output unit of measure from that of the source waveform:
 - Check Override units.
 - In **Output** enter the abbreviation for the unit the measure you wish to use.

You can also enter combinations of the unit abbreviations following these rules:

- For the quotient of two units, use the character ":/"
- For the product of two units, use the character "."
- For exponents, append the digit to the unit without a space: S2 = seconds squared.

NOTE: Some units may be converted to simple units (e.g., V.A will display as W).

Abbreviated Units of Measure

Abbreviation	Measure	Abbreviation	Measure
(blank)	No units	N	Newton
А	Ampere	онм	Ohm
С	Coulomb	PAL	Pascal
CYCLE	Cycles	РСТ	Percent
DB	Decibel	POISE	Poise
DBC	Decibel referred to carrier	РРМ	Parts per million
DBM	Decibel Milliwatt	RAD	Radian
DBV	Decibel Volts	DEG	Degree (of arc)
DBUZ	Decibel Microamp	MNT	Minute (of arc)
DEC	Decade	SAMPLE	Sample
DIV	Divisions	SWEEP	Sweeps
Event	Events	SEC	Second (of arc)
F	Farad	S	Second
G	Gram	SIE	Siemens
н	Henry	т	Tesla
HZ	Hertz	UI	Unit interval
J	Joule	v	Volt
к	Degree Kelvin	VA	Volt amps
CEL	Degree Celsius	w	Watt
FAR	Degree Fahrenheit	WB	Weber
L	Liter	MIN	Min
м	Meter	HOUR	Hour
FT	Foot	DAY	Day
IN	Inch	WEEK	Week
YARD	Yard		
MILE	Mile		

Averaging Waveforms

Summed Averaging

Summed Averaging is the repeated addition, with equal weight, of successive source waveform records. If a stable trigger is available, the resulting average has a random noise component lower than that of a single-shot record. Whenever the maximum number of sweeps is reached, the averaging process stops. In Summed averaging, you specify the number of acquisitions to be averaged. The averaged data is updated at regular intervals.

An even larger number of records can be accumulated simply by changing the number in the dialog. However, the other parameters must be left unchanged or a new averaging calculation will be started. You can pause the averaging by changing the trigger mode from NORM/AUTO to STOP. The instrument resumes averaging when you change the trigger mode back to NORM/AUTO.

You can reset the accumulated average by pushing the CLEAR SWEEPS button or by changing an acquisition parameter such as input gain, offset, coupling, trigger condition, timebase, or bandwidth limit. The number of current averaged waveforms of the function, or its zoom, is shown in the acquisition status dialog. When summed averaging is performed, the display is updated at a reduced rate to increase the averaging speed (points and events per second).

Continuous Averaging

Continuous Averaging, the default setting, is the repeated addition, with unequal weight, of successive source waveforms. It is particularly useful for reducing noise on signals that drift very slowly in time or amplitude. The most recently acquired waveform has more weight than all the previously acquired ones: the continuous average is dominated by the statistical fluctuations of the most recently acquired waveform. The weight of 'old' waveforms in the continuous average tends to zero (following an exponential rule) at a rate that decreases as the weight increases.

You determine the importance of new data vs. old data by assigning a weighting factor. Continuous averaging allows you to make adjustments to a system under test and to see the results immediately. The formula for both summed and continuous averaging is:

new average = (new data + weight * old average)/(weight + 1)

However, by setting a "sweeps" value, you establish a fixed weight that is assigned to the old average once the number of "sweeps" is reached. For example, for a sweeps (weight) value of **4**:

1st sweep (no old average yet): new average = (new data +0 * old average)/(0 + 1) = new data only
2nd sweep: new average = (new data + 1*old average)/(1 + 1) = 1/2 new data +1/2 old average
3rd sweep: new average = (new data + 2 * old average)/(2 + 1) = 1/3 new data + 2/3 old average
4th sweep: new average = (new data + 3 * old average)/(3 + 1) = 1/4 new data + 3/4 old average
5th sweep: new average = (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average

6th sweep: new average = (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average

7th sweep: new average = (new data + 4 * old average)/(4 + 1) = 1/5 new data + 4/5 old average

In this way, for sweeps > 4 the importance of the old average begins to decrease exponentially.

NOTE: The number of sweeps used to compute the average is displayed at the bottom of the trace descriptor box.

Set Up Averaging

To quickly set up Continuous Averaging (only), access the Channel setup dialog and enter the number of sweeps to average in Averaging. The valid range is 1 to 1,000,000 sweeps.

To apply Continuous or Summed Averaging as a Math function:

- 1. Follow the usual steps to set up a math fuction, selecting Average from the Basic Math submenu.
- 2. On the Average right-hand dialog, choose Summed or Continuous.
- 3. Touch Sweeps and provide a value. The valid range is 1 to 1,000,000 sweeps.

FFT

For a large class of signals, you can gain greater insight by looking at spectral representation rather than time description. Signals encountered in the frequency response of amplifiers, oscillator phase noise and those in mechanical vibration analysis, for example, are easier to observe in the frequency domain.

If sampling is done at a rate fast enough to faithfully approximate the original waveform (usually five times the highest frequency component in the signal), the resulting discrete data series will uniquely describe the analog signal. This is of particular value when dealing with transient signals because, unlike FFT, conventional swept spectrum analyzers cannot handle them.

Because of its versatility, FFT analysis has become a popular analysis tool. However, some care must be taken with it. In most instances, incorrect positioning of the signal within the display grid will significantly alter the spectrum, producing effects such as leakage and aliasing that distort the spectrum.

An effective way to reduce these effects is to maximize the acquisition record length. Record length directly conditions the effective sampling rate of the oscilloscope and therefore determines the frequency resolution and span at which spectral analysis can be carried out.

Set Up FFT

- 1. Follow the usual steps to set up a math function, selecting FFT from the Frequency Analysis submenu.
- 2. Open the FFT right-hand dialog.

FFT Zoom		Ӿ CLOSE
Output type Power Spectrum Window VonHann	_⊿ Suppress DC	
Line Impedance 50 Ω	Transform 524288 pts to 262145 bins Δf = 19 Hz Δf - 5.000 MHz ■ ENBW = 1.500	

- 3. Choose an Output type.
- 4. Optionally, choose a weighting **Window**. See below for more information about FFT weighting windows.
- 5. Depending on your **Output Type** selection, you may also make selections for :
 - Group Delay Shift
 - Line Impedence. By default, the FFT function assumes that the oscilloscope is terminated in 50 Ohms. If an external terminator is being used, this setting can be changed to properly calculate the FFT based on the new termination value.
- 6. Check the Suppress DC box to make the DC bin go to zero. Otherwise, leave it unchecked.

Choosing a Window

The choice of a spectral window is dictated by the signal's characteristics. Weighting functions control the filter response shape, and affect noise bandwidth as well as side lobe levels. Ideally, the main lobe should be as narrow and flat as possible to effectively discriminate all spectral components, while all side lobes should be infinitely attenuated. The window type defines the bandwidth and shape of the equivalent filter to be used in the FFT processing.

Rectangular windows provide the highest frequency resolution and are useful for estimating the type of harmonics present in the signal. Because the rectangular window decays as a (sinx)/x function in the spectral domain, slight attenuation will be induced. Functions with less attenuation (Flat Top and Blackman-Harris) provide maximum amplitude at the expense of frequency resolution, whereas Hamming and Von Hann are good for general purpose use with continuous waveforms.

WaveSurfer 3000 Oscilloscopes

Window Type	Applications and Limitations
Rectangular	These are normally used when the signal is transient (completely contained in the time-domain window) or known to have a fundamental frequency component that is an integer multiple of the fundamental frequency of the window. Signals other than these types will show varying amounts of spectral leakage and scallop loss, which can be corrected by selecting another type of window.
Hanning (Von Hann)	These reduce leakage and improve amplitude accuracy. However, frequency resolution is also reduced.
Hamming These reduce leakage and improve amplitude accuracy. However, frequency resolution is also re-	
Flat Top This window provides excellent amplitude accuracy with moderate reduction of leakage, but with frequency resolution.	
Blackman-Harris	It reduces the leakage to a minimum, but with reduced frequency resolution.

FFT Window Filter Parameters					
Window Type	Highest Side Lobe (dB)	Scallop Loss (dB)	ENBW (bins)	Coherent Gain (dB)	
Rectangular	-13	3.92	1.0	0.0	
Von Hann	-32	1.42	1.5	-6.02	
Hamming	-43	1.78	1.37	-5.35	
Flat Top	-44	0.01	3.43	-11.05	
Blackman-Harris	-67	1.13	1.71	-7.53	

Memory

The oscilloscope is equipped with twointernal memory slots (Mx) to which you can copy any channel, math, zoom or other special waveform that is active on the grid. This is a convenient way to store an acquisition for later viewing and analysis.

Memories are created at the same scale as the source trace, but they can be adjusted independent of the original by using the <u>Zoom controls</u> that appear next to the Mx dialogs.

Save Waveform to Memory

- 1. With the source waveform displayed on the grid, press the front panel **Mem button** or choose **Math** > **Memory Setup** to open the Memories dialog.
- 2. Touch the Mx tab corresponding to the memory slot you wish to use.

NOTE: Try to choose an empty slot, as anything currently stored in that location will be overwritten. All memories will state if they are empty or an acquisition is stored there.

Memories M1 M2	2		Zoom		🙁 CLOSE
Trace On	To save Waveform Memory to a local or network folder, use the "File" menu:	Source: C1 Stored: 4/18/2014 13:06:52 PM Notes	Segments First 1 × Num	Horizontal Center 0 Scale / div	Vertical Center _0
Copy From Waveform		. 4		_1.00	1.00
Сору	Actions for trace M1		Reset	x 1.00	x 1.00
Now	Measure Memory	Label	Zoom	in Out	in Out

- 3. In Copy from Waveform, choose the source trace to copy to memory.
- 4. Touch Copy Now.
- 5. Optionally, check **Trace On** to immediately display the memory. The memory will open in the same grid as the source trace. Use the Zoom controls to adjust the scale of the memory while it is turned on.

Restore Memory

- 1. Access the Memories dialog by pressing the front panel Mem button or choosing Math > Memory Setup.
- 2. Check **On** next to the memory you wish to display. A description of the memory showing the source channel and creation time appears next to each Mx on the dialog.

Analysis

Most Teledyne LeCroy oscilloscopes calculate measurements for all instances in the acquisition, enabling you to rapidly and thoroughly analyze a long memory acquisition of thousands or millions of parameter values, or to apply a variety of mathematical functions to the waveform trace.

<u>WaveScan</u> searches a single acquisition for events that meet specific criteria, enabling you to zoom in on anomalies in the waveform, or scans multiple acquisitions with allowable trigger actions when conditions are met. It can also be used to filter measurements. A variety of views help you understand the behavior of waveforms.

Optional software packages may be purchased that simplify specialized analysis, such as various Serial Data Decode options. These add new functionality to the oscilloscope Analysis menu.

WaveScan

The WaveScan[®] Search and Find tool enables you to search for unusual events in a single capture, or to scan for a particular event in many acquisitions over a long period of time. Each <u>Scan Mode</u> is optimized to find a different type of event. Results are time stamped, tabulated, and can be selected individually.

WaveScan window with different scan "views" turned on.

Customize the presentation by choosing different WaveScan display features, or <u>Scan Views</u>. Optionally, set Actions to occur automatically when unusual events are found, such as stopping the acquisition or sounding an alarm.

NOTE: Whenever WaveScan is enabled, the instrument reverts to Real-time sampling mode.

Scan Modes

The scan mode determines the type of search to be performed. Select the Mode along with the Source trace to be searched on the main WaveScan dialog. For each mode, different controls appear on the WaveScan dialog, providing additional inputs to the search criteria. Make the appropriate entries in these fields before starting the search.

EDGE MODE

Edge Mode is used for detecting the occurrence of edges. Events that meet the threshold level are captured and tabulated. When the acquisition is stopped, scan filters can be applied to the edges to find specific characteristics. Additional settings for Edge Mode are:

- Slope. Choose Pos, Neg, or Both.
- Level is (set in...). Choose Percent or Absolute.
- **Percent/Absolute Level**. Enter a threshold value as a percentage of Top to Base or voltage level. A marker displayed over the source trace indicates the level.

NON-MONOTONIC MODE

Non-monotonic Mode looks for edges that cross a threshold more than once between high and low levels. All events that meet the criteria of slope, hysteresis, and level are presented in a table and highlighted in the source trace. The value displayed in the table is the difference of the max. and min. of the non-monotonicity. This can be confirmed with cursors. The hysteresis value is used to eliminate noise. A non-monotonicity is detected only when its amplitude is greater than the hysteresis. Therefore, when setting a hysteresis level, set a value that is greater than the amplitude of the noise. Additional settings for Non-monotonic Mode are:

- Slope. Choose Pos, Neg, or Both.
- Hysteresis is (set in...). Choose Division, Percent, Absolute.
- Division/Percent/Absolute. Enter the hysteresis level in the units you selected.
- Levels are (set in...). Choose Percent, Absolute, or Pk-Pk%.
- High Level and Low Level. Enter the top and bottom thresholds in the units you selected.

RUNT MODE

Runt Mode looks for pulses that fail to cross a specified threshhold. You can search for positive-going or negative-going runts, or both. An adjustable hysteresis band is provided to eliminate noise.

In the case of negative-going runt pulses, the value displayed in the table is the difference (delta) of the high level of the signal and the runt amplitude (i.e., where the runt bottoms out). This can be confirmed by placing cursors on the runt pulse and reading the delta Y value in the trace labels. In the case of positive-going runt pulses, the value displayed in the table is the absolute value of the amplitude of the runt pulse. Additional settings for Runt Mode are:

- Runt Type. Choose Both, Pos, or Neg.
- Hysteresis. Enter the hysteresis level as a percentage or voltage.
- Low Threshold and High Threshold. Enter the levels as a percentage or voltage.
- Absolute Levels. Check this box to enter levels as absolute voltage instead of percentage.

MEASUREMENT MODE

Measurement Mode is used for applying filters to measurements to find those that meet your defined criteria, helping to isolate particular events within many samples. Markers appear over the source trace to indicate the location of measurement, while the table displays values for the selected parameter that meet the criteria. Additional Settings for Measurement Mode are:

- Measurement. Choose the measurement parameter you wish to search.
- Filter Method. Choose the operator that indicates the desired relationship to the Filter Limit. Only measurements that meet this criteria are returned.
- Filter Limit. Enter the value that completes the filter criteria.

Alternatively, you can use the **Filter Wizard** to create the filter criteria.

BUS PATTERN MODE

Bus Pattern Mode (MSO only) is used for finding 2- to 16-bit patterns across the digital lines. Additional settings for Bus Pattern Mode are:

- Viewing. Choose to enter the pattern as Binary or Hex(adecimal).
- Binary/Hex. Enter the pattern.
- Num. Patterns to detect. Enter a whole number.

Scan Views

Scan Views are different ways to view your WaveScan results. You can choose to display views simultaneously or visit them sequentially. Just check the boxes at the bottom of the WaveScan dialog for those views you wish to display. Uncheck the box to turn off the view.

By default, the **Source Trace** is displayed in the top grid, with markers indicating points in the trace that meet the search criteria.

Table view displays a table of measurements relevant to your chosen Search Mode next to the source trace. **Times** view adds columns to the table showing Start and Stop Times for each event.

Zoom view works exactly as it does elsewhere in the oscilloscope software, opening a close-up of the source trace in a new grid that you can adjust vertically and horizontally. A Zx tab appears by default when you launch WaveScan; see <u>Zoom Controls</u> for an explanation of the remainder of the controls found on this dialog.

A unique feature of the WaveScan Zoom is that you can automatically zoom the events captured from the source trace by touching the Prev/Next buttons on the Zx dialog. You can also select the event from the Table display, and you are automatically relocated to that event on the zoom trace.

Setting Up WaveScan

This procedure explains how to set up WaveScan to search an acquisition for events of interest. Set up your source channel and triggers before setting up the scan.

WaveScan	WScanZ1			S CLOSE
Enable	Mode _Edge	Source1 		Edge Settings Slope Pos
	Table	Zoom Times	Action on Features Found Trigger Action	Percent level Level is 50 % <u>Percent</u> Hysteresis is fixed at 0.5 divisions

- 1. Press the front panel Stop button to stop acquisition.
- 2. Choose Analysis > WaveScan.
- 3. Check Enable.
- 4. Choose the Source waveform.
- 5. Choose the <u>Scan Mode</u> and enter values for any additional settings that appear at the right of the dialog based on your selection.
- 6. If you're using Measurement Mode, set up the filter in one of the following ways:
 - Touch Filter and choose an operator, then enter the Filter Limit.
 - Touch **Filter Wizard** and choose one of the pre-set filters. The Filter and Filter Limit are automatically set based on your selection.
- 7. Select each <u>Scan View</u> in which you wish to display results by checking the box at the bottom of the dialog. Each view selected is displayed simultaneously.
- 8. Optionally, choose an Action to trigger when an event that meets your scan criteria is found.
- 9. Restart acquisition.
- 10. When using the Zoom view, use the WScanZx tab to adjust the zoom.

Utilities

Utilities settings primarily control the instrument's interaction with other devices/systems. <u>Preferences</u>, on the other hand, tend to control the appearance and performance of the oscilloscope application.

To access the Utilities dialog, choose Utilities > Utilities Setup... from the menu bar.

HardCopy Setup, Date/Time Setup, and System Status buttons open their corresponding dialogs, as do the tabs.

There are also tabs linking to Remote Control, Auxilliary Output, and Options settings.

Update Firmware opens a dialog for installing the oscilloscope application firmware.

<u>Touch-Screen Calibration</u> launches a sequence of display calibration screens. You will be prompted through a series of actions to improve the precision and accuracy of the touch screen.

The **Service** button to the far right of the dialog launches a section of the application reserved for qualified Teledyne LeCroy service personnel. An access code is required to enter this section.

System Status

The Utilities Status dialog displays information about your instrument including model number, serial number, firmware version, and installed hardware and software options.

Choose Utilities > Utilities Setup from the menu bar, then touch the Status tab.

OR

Choose **Support > About** from the menu bar.

The Utilities Status is not the same as the Status feature accessed through various menus (e.g., Vertical > Channels Status). That feature displays the current state of the oscilloscope configurations —such as acquisition, channel, measurement parameter, math function, and memory settings.

Remote Control Settings

The Remote dialog contains settings to configure remote control of the instrument and also network access. Supported remote control protocols are:

- **TCPIP (Ethernet)**. If you choose this option, also install Teledyne LeCroy's VICP drivers on the controller. These are included in the VICP Passport plug-in, available free from teledynelecroy.com. The instrument uses Dynamic Host Configuration Protocol (DHCP) as its default addressing protocol, although you can manually assign a static IP address.
- USBTMC

Utilities Status	Remote	Hardcopy Aux Output	Date/Time Options	Mask Options	🙁 CLOSE
Control from		TCP/IP		Security	Remote Control Assistant
Off TCPIP (VICP)		LCRY0120N12005		Restrict remote control to specified clients?	Show Remote Control Log
GPIB (VXI11)				No Yes	Log Mode , Errors Only
LSIB USBTMC		Net Connections	Network ID		Reset to Errors Only and clear at startup

Assign Static IP Address/Name Server

Before starting, consult with your Network Administrator regaring the oscilloscope's network address, subnet, default gateway.

NOTE: You can also use this procedure to assign a name server if your network uses DHCP addressing.

- 1. Connect a keyboard to the front panel USB port.
- 2. From the menu bar, choose Utilities > Utilities Setup, then touch the Remote tab.
- 3. On the Remote dialog, touch Net Connections.
- 4. Touch the SMSC icon.

<u>File</u> Edit	. <u>V</u> iew	Advanced		<u>۲</u>				? ×
S								
Make New Connection	SMSC950)01						
				'SMSC9500 USE	82.0 FAST Eth	ernet Driver' Sett	ings OK ×	
			IP Address Nam	ne Servers				
				An IP address c automatically as		Obtain an IP add	dress via DHCP	
				computer. If yo	our network	Specify an IP ad	dress	ļ
				does not autom IP addresses, as	natically assign sk your network	IP <u>A</u> ddress:	192.168. 1 .56	
				administrator for and then type i	r an address,	S <u>u</u> bnet Mask:	255.255.255.0	
				provided.		Default <u>G</u> ateway:	192.168. 1 . 0	

5. On the Ethernet Driver Settings dialog, choose **Specify an IP Address**.

If assigning a Name server, leave Obtain an IP address via DHCP.

6. Touch the **IP Address** field, and use the keyboard to enter the address. Repeat for Subnet Mask and Default Gateway.

Alternatively, touch the Name Server tab and enter the DNS server address.

7. Touch the window close boxes to return to the oscilloscope application.

Enter Network ID

The network file sharing capabilities require that the oscilloscope have access to the network domain and shares. Use the Network ID settings to enter network credentails. Once credentials have been saved, the oscilloscope should connect to the network seamlessly; you do not need to re-enter credentials unless you wish to change them.

NOTE: These may be the credentials of any valid domain user (e.g., your own logon); they do not have to be unique to the oscilloscope. Consult with your Network Administrator.

- 1. Connect a keyboard to the front panel USB port.
- 2. From the menu bar, choose Utilities > Utilities Setup, then touch the Remote tab.
- 3. On the Remote dialog, touch Network ID.
- 4. On the Owner Properties dialog, enter the network User Name, Password, and Domain Name.

5. Reboot the oscilloscope after entering or changing the Network ID.

Set Up Remote Control

NOTE: Full remote control setup requires the installation and configuration of software on the controller, as well. These steps represent only what is done on the oscilloscope. See your oscilloscope Remote Control manual for an explantion of the complete process.

- 1. From the menu bar, choose Utilities > Utilities Setup, then touch the Remote tab.
- 2. On the Remote dialog, make a Control From selection.
- 3. If using TCPIP and wish to restrict control of the oscilloscope to specific network clients, touch **Yes**. Enter the IP addresses or DNS names of the authorized controllers in a comma-delimited list.

Configure the Remote Control Assistant Event Log

The **Remote Control Assistant** monitors communication between the controller and oscilloscope when you are operating the instrument remotely. You can log all events or errors only. The log can be output to an ASCII file and is invaluable when you are creating and debugging remote control programs.

- 1. From the menu bar, choose Utilities > Utilities Setup, then touch the Remote tab.
- 2. Under Remote Control Assistant, touch Log Mode and choose Off, Errors Only, or Full Dialog.
- 3. To always clear the log at startup, check Reset to Errors Only and clear at startup.

Export Contents of the Event Log

- 1. From the menu bar, choose Utilities > Utilities Setup, then touch the Remote tab.
- 2. Touch the Show Remote Control Log button. The Event Logs pop-up is shown.
- Enter a log file name in **DestFilename**, or touch Browse and navigate to an existing file.
 NOTE: New contents will overwrite the existing content; it is not appended.
- 4. Touch Export to Text File.

Hardcopy Settings

Hardcopy settings control how the oscilloscope **Print** function behaves. Print captures an image of the oscilloscope display, but there are several options as to what it does with the image next:

- · Send to a hardcopy printer
- "Print" to a file that can be saved to an internal or external drive
- Send to E-Mail

Each option is set up on the Utilities Hardcopy dialog. You can further set up a default print color scheme and capture area.

NOTE: You can configure the front panel Print button to create a new Notebook Entry to be included in a LabNotebook report. This is not done in Utilities Hardcopy, but in LabNotebook itself. See <u>Print to Notebook</u> <u>Entry</u>. However, the File menu Print option will continue to use your Hardcopy setting.

See Print Preview for more information about the Print function.

Send to Printer

Follow these steps to configure output to a printer. To print immediately, touch the **Print Now** button at the far right of the dialog.

NOTE: WaveSurfer 3000 oscilloscopes support PictBridge-compatible printers. Printers can be connected via LAN (Ethernet) or USB.

- 1. From the menu bar, choose File > Print Setup... or Utilities > Utilities Setup > HardCopy.
- 2. On the Utilities Hardcopy dialog, choose Printer.
- 3. Choose a page Orientation: portrait or landscape.
- 4. Optionally, choose print Colors and a Hardcopy Area.

Print to File

- 1. Choose Utilities > Utilities Setup... from the menu bar, then touch the Hardcopy tab.
- 2. On the Hardcopy dialog, choose File.
- 3. Choose the output File Format.

4. Enter a File Name. This will form the basis of all filenames, until you change it.

NOTE: Numbers you add to the end of the filename will be truncated, as the instrument appends numbers to this name with each new file. To add your own identifying numbers, place them at the front of the name.

5. To save the file on a USB drive instead of the internal storage card, touch **Browse** next to Directory and choose **USB Disk**.

TIP: If the oscilloscope is networked, you can touch on Save Files in Directory and enter the full Windows network address of another location in which to save the file. The oscilloscope must have access to this directory. If this path remains on the Hardcopy dialog when the oscilloscope is turned off, you will be asked for log on credentials to this directory when the oscilloscope is rebooted.

6. Optionally, choose a color scheme and hardcopy (print) area.

Send to E-Mail

Follow this procedure to e-mail capture files to a preset address. The e-mail connection is set up in **Utilities** > **Preferences Setup > E-Mail.**

- 1. Choose Utilities > Utilities Setup... from the menu bar, then touch Hardcopy tab.
- 2. On the Hardcopy dialog, choose E-Mail.
- 3. Choose the output **File Format**.
- 4. If you wish to be able to include messages with the files as they are sent, check **Prompt for message to send with mail**.
- 5. Optionally, choose a color scheme and hardcopy (print) area.
- 6. To go on and set up the e-mail connection, touch **Configure E-Mail Server and recipient**. This will take you to the Preferences E-Mail dialog.

Choose Print Color Scheme

To change the color of your print output, touch the **Color** button on the Hardcopy dialog and choose from:

- Standard(default) prints objects on a black background, as they appear on the display.
- Print prints objects on a white background. This option saves ink.

Set Print Area

To limit which part of the touch screen is captured, touch **Hardcopy Area** on the Hardcopy dialog and choose from:

- Grid Area Only omits dialogs and menus and prints only the grids.
- DSO Window prints the dialogs with the grids.

Aux Output Settings

The **Aux Out** port on the back of the oscilloscope outputs a 3.3V TTL pulse to another device following a trigger event.

Use the Aux Output dialog to configure the calibration signal output from the **Cal Out** hook on the front of the oscilloscope. The calibration output voltage is 3V.

Utilities	Status	Remote	Hardcopy	Aux Output	Date/Time	Options			🙁 CLOSE
				Use C	alibration Outpu	rt For			
				s 🔟 s	quare Wave		Frequency 100 kHz		
				? 0	off		Set to 1KHz Square Wave		

To turn on the calibration signal:

- 1. Under Use Calibration Output For, choose Square wave.
- 2. Either enter the Frequency, or use the Set to 1 KHz Square Wave button.

Touch **Off** to disable the calibration signal.

Date/Time Settings

Date/Time settings control the oscilloscope's timestamp. These numbers appear in the oscilloscope message bar and on tables/records internal to the oscilloscope application, such as History Mode and WaveScan.

NOTE: This is not the same as the Timebase reference clock used to synchronize traces.

To access the Date/Time dialog, choose **Utilities > Utilities Setup** from the menu bar, then touch the **Date/Time tab**.

Manual Method

Enter the Hour, Minute, Second, Day, Month, and Year, then touch the Validate Changes button.

Internet Method

This method uses the Simple Network Time Protocol (SNTP) to read the time from time-a.nist.gov. The oscilloscope must be connected to an internet access device through the LAN (Ethernet) port on your instrument's I/O panel.

If your connection is active, touch the Set from Internet button.

Time Zone

Select a Time Zone.

Check **Auto Daylight Savings Time** to automatically reset the timestamp when daylight savings occurs in the selected time zone.

Options

The **Options** dialog is used to add or remove software options. This dialog also displays the **ScopelD** and **Serial** #. See <u>Adding an Option Key</u> for instructions on using this dialog.

Preferences Settings

Preference settings have mostly to do with the appearance and performance of the oscilloscope itself, rather than the oscilloscope's interaction with other devices/systems.

Access the Preferences dialog by choosing Utilities > Preference Setup... from the menu bar.

Audible Feedback controls the instrument's audio output. Select this box to hear a beep each time you touch a screen or front panel control.

Language sets the language used on the display.

There are also tabs linking to Calibration, Acquisition, E-Mail, and Miscellaneous settings.

Calibration Settings

To ensure the instrument maintains specified performance, it is factory set to perform a calibration during warm-up. We recommend that you warm up the oscilloscope for at least 20 minutes prior to use to give the instrument time to complete calibration procedures.

Manually calibrate the oscilloscope when:

• It is used in temperatures that differ from the previous calibration temperature by more than 5° C.

OR

• It has been more than one month since the previous calibration.

Go to Utilities > Calibration Setup.

The Calibration dialog shows the oscilloscope's calibration status and recommended actions.

Preferences Cali	bration Acquisition E-Mail Miscellaneous	Ӿ CLOSE
Calibration	Status:	
Calibrate Current State	Calibrate Current State will calibrate current setting of the oscilloscope. It will be valid for +/- 5 deg C delta from current temperature. This calibration takes about 10 seconds. Calibration is valid.	
Calibrate All	Calibrate All will calibrate all settings for current environmental condition. It will be valid for +/- 5 deg C delta from current temperature. Disconnect all input signals before continuing. It may take over an hour to finish.	

There are two options for this calibration: Calibrate All or Calibrate Current Setting.

- **Calibrate All**—All possible combinations of vertical and horizontal settings are calibrated at the current temperature. This calibration is valid for the current temperature ± 5° C and takes about 120 minutes.
- **Calibrate Current Setting**—The oscilloscope is calibrated at the current vertical and horizontal setting. This calibration is valid for this setting for the current temperature ± 5° C and takes under 30 seconds.

CAUTION. It is required that all inputs be removed from the oscilloscope prior to performing calibration.

Acquisition Settings

The Acquisition settings determine how traces behave on screen as gain or timebase changes.

Preferences Calibration Acquisition E	-Mail Miscellaneous		🙁 CLOSE
Offset Setting Constant In:	Delay Setting Constant In:	Trigger Counter Setting:	
VoltsOn Vertical Scale changes, the offset setting can be constant in either divisions or in absolute volts.Div	TimeOn Horizontal Scale changes, the delay setting can be constant in either divisions or in absolute time.Div	Reset trigger counter before starting a new acquisition.	L

Offset Setting constant in:

- Volts moves the vertical offset level indicator with the actual voltage level.
- **Div**(isions) keeps the vertical offset level indicator stationary. The waveform remains on the grid as you increase the gain; whereas, if Volts is selected, the waveform could move off the grid.

Delay Setting constant in:

- Time moves the horizontal offset level indicator with the trigger point.
- **Div**(isions) keeps the horizontal offset indicator stationary. The trigger point remains on the grid as you increase the timebase; whereas, if Time is selected, the trigger point could move off the grid.

NOTE: The Offset is always in volts, and the Delay is always in time. However, whenever Div is selected, these are scaled proportional to the change in gain or timebase, thereby keeping the division of the grid constant.

Checking **Reset trigger counter before starting a new acquisition** clears the trigger counter each time the oscilloscope issues an acquisition command. It is only available when trigger Holdoff is set.

E-Mail

Use the E-mail dialog to set up e-mail on the oscilloscope.

Preferences Calibration Acquisition E-Mail	Miscellaneous	🙁 CLOSE
E-Mail Server Configuration	Overview of E-Mail mode	
SMTP Server	SMTP uses a Simple Mail Transfer Protocol server	
domino.lecroy.com	directly. In many cases no account is required.	
Originator Address (From:)		
_scope.name@company.com		
Default Recipient Address (To:)		Send Test Mail
your.colleague@company.com		Ivian

Enter the network name of your SMTP Server.

In Originator Address (From:), enter the instrument's e-mail address.

If desired, enter a **Default Recipient Address (To:)** All email sent from the oscilloscope will go to this address unless manually changed.

Click Send Test Mail to send a confirmation message to ensure proper e-mail configuration.

Miscellaneous Settings

These other Preference settings are located on the Miscellaneous dialog.

Preferences Calibration Acquisition	E-Mail Miscellaneous	🔀 CLOSE
Hardcopy	Zoom	Serial Decode
Print Teledyne LeCroy Logo	Dimming	Annotations Position
Print Teledyne LeCroy Logo When Printing Grid Area Only	On L	On Trace
		Security
Everywhereyoulook	Control Sensitivity	Enable HTTP
	Optimized	Screen Capture

To add the Teledyne LeCroy logo to print output, check **Print Teledyne LeCroy Logo When Printing Grid Area Only**. This identifies the instrument as the source of the image.

You can adjust zoom behavior as follows:

- Dimming darkens/shades those areas of the source waveform that are not part of the Zoom trace.
- **Control Sensitivity** adjusts the sensitivity of the front panel knobs. **Optimized** applies an acceleration algorithm to the knobs. **Legacy** detects rotation of the front panel knobs in a manner similar to our legacy oscilloscopes.

Serial Decode Annotation Position: If you have Serial Trigger or Decode options installed on your oscilloscope, this control determines the placement of annotation labels relative to the trace line. It does not appear if there are no installed options.

- On Trace places the label close to the line.
- On Noisy Trace sets the label further from the line to accommodate potential noise spikes in the trace.

Check **Enable HTTP Screen Capture** to enable remote capture of the oscilloscope display over a netowrk. This setting is required to use the oscilloscope with the WaveStudio software.

Digital Voltmeter

The Digital Voltmeter option (WS3K-DVM) activates an integrated 4-digit digital voltmeter and 5-digit frequency counter that operates through the same probes already attached to the oscilloscope channels. Use it to view real-time measurements through a dedicated user interface display that continues even when your triggering system is stopped.

NOTE: You do not need to display the source channel trace to see the voltage readout on the DVM descriptor box and dialog.

DVM Readout

DVM DESCRIPTOR BOX

- A. AutoScale indicator; "A" when on, blank when off
- B. Mode
- C. Input channel measured
- D. Voltage readout, color coded to match input channel

DVM DIALOG

DVM				🙁 CLOSE
Enable	Setup	Amplitude :	<u>3.53V</u> Frequency : 40.967 kHz	

- A. Last measured voltage
- B. Histogram of measured voltage
- C. Vertical range (in -/+ divisions) of signal
- D. Amplitude and Frequency readout

Set Up DVM

- 1. From the menu bar, choose Utilities > DVM.
- 2. Mark Enable to turn on the DVM function.
- 3. Touch Source and select the input channel to be measured.
- 4. Touch Mode and choose the waveform parameter to display on the readout. Options are:
 - DC
 - DC RMS
 - AC RMS
 - Frequency
- 5. Optionally, turn on **AutoRange**, which automatically adjusts the Vertical range and offset of the waveform as the amplitude changes so that measurements are always taken at the optimal resolution. When this option is selected, the letter A appears on the DVM descriptor readout.

WaveSource Automatic Waveform Generator

The WaveSource Automatic Waveform Generator allows you to output custom sine, square, triangle, pulse, DC, noise, and arbitrary waveforms from the WaveSurfer 3000.

Connect a BNC cable from the WaveSource output on the back of the oscilloscope to the external device. Output is continuous once WaveSource is enabled.

Output Standard Waveform

WaveSource			🙁 CLOSE
WaveSource	Waveform	Settings	Utilities
		Frequency Duty Cycle	
Enable		Freq Period 1.00000000 kHz 50 %	
		Amplitude	Default Setup
с 🎽 з			
Load	DC Noise ARB		0-17
HiZ 🖌	ARB	Ampl Level Offset	Calibrate
		0 mV	
	· ·		

- 1. Choose Utilities > WaveSource or touch the front panel WaveSource button.
- 2. Select the Load level.
- 3. Choose a Waveform type.
- 4. Depending on the type, waveforms may be configured using different groups of **Settings** (e.g., Frequency or Period, but not both). When you see buttons offering this choice, first select the group of settings to use.
- 5. Adjust parameters (e.g., Frequency) by touching the field and turning the front panel Adjust knob, or touch twice and use the soft keypad to enter new values.

Touch **Default Setup** to restore the default parameters.

6. Check Enable to begin output.

Import and Output Arbitrary Waveform

The Arbitrary waveform feature enables you to import waveforms via file, then output this waveform from the function generator.

Waveform files must be saved in .csv format (using Excel®, WaveStation[™], etc.) to be imported into WaveSource. Use the <u>Save Waveform</u> file fuction to save waveforms from the oscilloscope for output via WaveSource.

To import an external file, first save it to a USB drive or transfer it directly to the WaveSurfer storge card if your oscilloscope is networked.

WaveSurfer 3000 Oscilloscopes

WaveSource			🙁 CLOSE
WaveSource	Waveform	Settings	Utilities
Enable	Sine Square Triangle Pulse	Frequency Freq Period 2.000000000 MHz Amplitude \Storage Card\C1Arb00000.csv Browse	Default Setup
Load Hiz	DC Noise ARB	Ampl Level Offset Upload	Calibrate

- 1. Choose Utilities > WaveSource or touch the front panel WaveSource button.
- 2. Select the Load level.
- 3. Choose Waveform type ARB.
- 4. Touch **Browse** next to the File Name field and browse to the location of the arbitrary waveform file on either the Storage Card or the USB Disk. Select the file and touch **OK**.
- 5. Touch Upload.
- 6. Check Enable to begin output.

NOTE: When outputting Arbitrary waveforms, the Frequency shown on the WaveSource dialog is the pattern repetition rate, not the actual Frequency of the source waveform from which the waveform file was created.

Calibrate Function Generator

Touch the Calibrate button to start the internal calibration of the Function Generator.

CAUTION. Remove all cables before starting the calibration.

Save/Recall

The oscilloscope **File menu** allows you to save or retrieve waveform files, measurement table data, and instrument setup panels.

Access these functions by choosing any of the Save or Recall options from the File menu. The dialog contains a tab for each file function.

Save/Recall Setups

Save Setups allows you to quickly save up-to-six oscilloscope panel settings to internal storage, while Recall Setups restores them with a touch.

If desired, you can also save oscilloscope panel settings as an .lss file in a different location, such as a USB drive, and recall them from the same.

Saving Oscilloscope Setups

Choose File > Save Setup... from the menu bar.

Save Wave	form Recall Waveform Save Table	Save Se	etup Recall Setup Disk Utilities			🙁 CLOSE
	Save To Inte	rnal Setup			Save To File	
	Setup1 23-May-2014 13:26:26		Setup4 - Empty		Save Panel To File	
Save	test	Save	Panel4	4	test.lss	Browse
	Setup2 - Empty		Setup5 - Empty			
Save	Panel2	Save	Panel5			
	Setup3 - Empty		Setup6 23-May-2014 13:27:56			Save
Save	Panel3	Save	Panel6			Now!
				=		

SAVE SETUP TO MEMORY

- 1. Touch one of the Setup data entry controls and enter a name for the memory.
- 2. Touch the corresponding Save button directly to the left of the Setup field.

The save date/time is displayed above the Setup data entry control.

SAVE SETUP TO FILE

- 1. In Save Panel to File, touch Browse and navigate to the desired folder (Storage Card or USB Disk).
- 2. Enter a File name, or choose a existing file to overwrite. Touch OK.
- 3. On the Save Setups dialog, touch Save Now!

Recalling Oscilloscope Setups

Choose File > Recall Setup... from the menu bar.

Save Wavef	orm Recall Waveform Save Table	Save Setup	Recall Setup	Disk Utilities		🙁 CLOSE
	Recall From In	ternal Setup			Recall From File	
Recall	Setup1 23-May-2014 13:26:26 test		Setup4 - Empty Panel4		Recall Panel From File test.lss	Browse
Recall	Setup2 - Empty Panel2		Setup5 - Empty Panel5		Recall Default Setup	
Recall	Setup3 - Empty Panel3	Pacall	Setup6 23-May-2014 Panel6	13:27:56	Recall Default	Recall Now!

RECALL SETUP FROM MEMORY

Touch one of the six Recall buttons under Recall From Internal Setup....

NOTE: If a setup has been stored to a location, it is labeled with the save date/time. Otherwise, the slot is labeled **Empty**.

RECALL SETUP FROM FILE

- 1. In **Recall panel from file**, touch **Browse** and navigate to the desired folder.
- 2. Select the setup file and touch **OK**.
- 3. On the Recall Setups dialog, touch Recall Now!
Save/Recall Waveforms

The Save Waveform function saves trace data to either an internal memory location, or to a text or binary format file (.trc). The source waveform can be any trace; for example, a channel, math function, or a waveform stored in another memory. Use Recall Waveform to restore these previously saved waveforms to the display.

NOTE: Only .trc files saved in binary format can be recalled into the oscilloscope.

By default, trace files are saved to the MicroSD card, although you can choose another location, such as a USB drive. The file name is autogenerated from the <source trace><trace title><number in sequence> (e.g., C1test000001).

Save Waveform

Choose File > Save Waveform from the menu bar.

Save Waveform	Recall Waveform	Save Table	Save Setup	Recall Setup	Disk Utilities			🙁 CLOSE
Save To		Da	ata Format	Auto	o Save (save on ea	ich new trigger)	Dis	k Space
Memory	Source	Binary	Format⊿				Size : Free :	1.76 GB 1.73 GB
File	Trace Title	Word	ubFormat Delimiter ×	\Storage Ca	Next File Will Be S	Browse		INL ➡ Save Now!

SAVE WAVEFORM TO MEMORY

1. Touch Memory.

NOTE: When Memory is selected, only Source and Destination controls are shown on the Save Waveform dialog. When File is selected, many more controls are available.

- 2. Choose the Source trace you are saving.
- 3. Choose the Destination location.
- 4. Touch Save Now!

SAVE WAVEFORM TO FILE

- 1. Touch File.
- 2. Choose the **Source** waveform.
- 3. Optionally, touch **Trace Title** to change the root file name of your waveforms.

CAUTION. Numbers at the end of this name are truncated because the instrument appends a number to each file. Place numbers at the beginning, or place an alpha character after the number (e.g., XYZ32a).

- 4. Touch Data Format and select a file format:
 - **Binary**, Teledyne LeCroy's binary file format (.trc). Binary results in the smallest possible file size, and is necessary for recalling waveforms to Teledyne LeCroy instruments.

NOTE: Binary files can be converted to ASCII using Teledye LeCroy utilities such as ScopeExplorer or WaveStudio.

- ASCII text file (.txt extension).
- MATLAB text file (.dat extension).
- Excel text file (.csv extension).
- MathCad text file (.prn extension).
- Audio .wav file.
- 5. Depending on your file format selection, you may also need to specify a SubFormat:
 - Word (Binary) represents samples in the output file with 16 bits. Always use this options unless Byte mode is "pre."
 - Byte (Binary) represents samples in the output file with 8 bits. This option can result in a loss of output file resolution.
 - Auto (Binary) looks at the data and automatically selects either Word or Byte subformat.
 - Amplitude only (Text) includes amplitude data for each sample, but not time data.
 - Time and Amplitude (Text) includes both types of data for each sample.
 - With Header (Text) includes a file header with scaling information.
- 6. If you selected **ASCII** format, also touch **Delimiter** and select a delimiter character from the pop-up menu.
- 7. In Save Files in Directory, touch **Browse** and navigate to the desired location (Storage Card or USB Disk). Touch **OK**.

NOTE: If the oscilloscope is networked, you can touch on Save Files in Directory and enter the full Windows network address of another location in which to save the file. The oscilloscope must have access to this directory. If this path remains on the Save Waveform dialog when the oscilloscope is turned off, you will be asked for log on credentials to this directory when the oscilloscope is rebooted.

8. On the Save Waveform dialog, touch Save Now!

Recall Waveform

Choose File > Recall Waveform from the menu bar.

NOTE: Only .trc files saved in binary format can be recalled into the oscilloscope.

Save Waveform	Recall Waveform	Save Table	Save Setup	Recall Setup	Disk Utilities			😢 CLOSE
Recall From				Trace	e Files			1
Memory	Destination		Show Only F C1 Storage Card	 all Files From Dire	ectory	Browse		
	_M1	▲	Next C1test00015.tr	File Will Be Recalle rc	ed From	Browse	7	Recall
	On Recall		23-May-2014	13:21:46 (200'361	bytes)			Now!

RECALL WAVEFORM FROM MEMORY

- 1. Touch Memory.
- 2. Touch Source and choose a memory location from the Select Source pop-up.
- 3. Touch Destination and select a location into which to open the recalled memory.
- 4. Mark Show on Recall to display the trace on the grid.
- 5. Touch Recall Now!

RECALL WAVEFORM FROM FILE

- 1. Touch File.
- 2. Touch **Recall files from directory** and enter the path to the waveform folder, or touch **Browse** and navigate to the folder.
- 3. Use the **Up /Down Arrows** to cycle through the available files until the desired file is selected.

Optionally, touch **Show only files** to apply a search filter (**channels**, **math functions**, or **memory**) to the list of available files.

- 4. Mark Show on Recall to display the trace on the grid.
- 5. Touch Recall Now!

Save Table Data

The Save Table function saves tabular measurement data displayed on screen to an Excel or ASCII file. By default, files are saved on the MicroSD card, although you can choose a USB drive.

Access the **Save Table** dialog by choosing **File > Save Table** from the menu bar.

Save Waveform Recall Waveform	Save Table	Save Setup	Recall Setup Disk Utilities			🙁 CLOSE
	Dat	a Format	Auto Save (save on each new trigger)		Dis	k Space
Source ∟All Displayed	ASCIL	Format▲	📑 😫 Off 🔄 🖶 Wrap 📃 Fill		Size : Free :	1.76 GB 1.73 GB
Table Title	De Comma	elimiter 	Save Files In Directory \Storage Card Next File Will Be Saved To: XXTable00000.txt	Browse		ரா ⊢ ஜ Save Now!

- 1. Leave the default **Source** selection All Displayed.
- 2. Optionally touch Table Title and enter a new root file name.

CAUTION. Numbers at the end of this name are truncated because the instrument appends a number to each file. Place numbers at the beginning, or place an alpha character after the number (e.g., XYZ32a).

- 3. Touch Data Format and choose from ASCII (.txt) or Excel (.csv) format.
- 4. If you selected ASCII format, also touch Delimiter and choose a character.
- 5. In Save Files in Directory, touch **Browse** and navigate to the desired folder (Storage Card or USB Disk). Select it and touch **OK**.

NOTE: If the oscilloscope is networked, you can touch on Save Files in Directory and enter the full Windows network address of another location in which to save the file. The oscilloscope must have access to this directory. If this path remains on the Save Table dialog when the oscilloscope is turned off, you will be asked for log on credentials to this directory when the oscilloscope is rebooted.

6. On the Save Table dialog, touch Save Now!

Auto Save

Data that appears on the oscilloscope display, such as waveforms, measurement readouts and decoder data, can be very dynamic and difficult to read from the oscilloscope unless you stop the acquisition.

The Auto Save enables you to automatically store waveform and table data to a file that can be recalled to the oscilloscope later or saved permanently to external storage.

To automatically save data to a file after each new trigger, choose an **Auto Save** option on the Save Waveform and Save Table dialogs: **Wrap** (old files overwritten) or **Fill** (no files overwritten).

CAUTION. If you have frequent triggers, it is possible you will eventually run out of storage space. Choose Wrap only if you're not concerned about files persisting on the instrument. If you choose Fill, plan to periodically delete or move files off the instrument.

By default, waveform files and table data are stored on the MicroSD Card.

Disk Utilities

Use the Disk Utilities dialog to manage files and folders on your instrument's hard drive. Disk Space information is shown at the far right of the dialog for convenience.

Access the **Disk Utilities** dialog by selecting **Utilities > Disk Utilities** from the menu bar, or choose any of the Save/Recall functions and open the Disk Utilities tab.

Delete a Single File

- 1. Touch the **Delete** button.
- 2. Browse to the current folder containing the file.
- 3. **Browse** to the file to be deleted, or use the **Up**and **Down** arrow buttons to scroll through the files in the folder.
- 4. With the desired file selected, touch Delete File.

Delete All Files in a Folder

- 1. Touch the **Delete** button.
- 2. Browse to the current folder containing the file.
- 3. With the desired folder selected, touch Empty Folder.

Create a New Folder

- 1. Touch Create.
- 2. Touch Current folder and provide the full path to the new folder, including the folder name.
- 3. Touch Create Folder.

Back Up Files

Touch **Backup** to back up the entire contents of the hard drive to a removable storage device. If a USB drive is installed, you can choose to back up to USB or to the removable Storage Card (MicroSD Card). Otherwise, Storage Card is the default.

Sanitize Instrument

Touch **Sanitize** to delete all user data (setups, waveform files, screen captures, LabNotebook entries, etc.) from the oscilloscope hard drive.

NOTE: The Sanitize function does not affect the MicroSD Card. The card can be removed before or after sanitizing for storage in a secure facility.

LabNotebook

Teledyne LeCroy's LabNotebook feature extends the documentation capabilities of your oscilloscope. It allows you to create and save Notebook Entries containing all displayed waveforms, the oscilloscope setup under which they were taken, and custom annotations.

Notebook Entries are stored in an internal database and are available for recall at any time. Besides storing the waveform data, LabNotebook also stores your panel setups and parameter measurements. You can back up this database to external media for indefinite storage of waveform data.

The Flashback Recall feature instantly recalls the setups stored with individual Notebook Entries, enabling you to restore the exact state of the oscilloscope at a later date to perform additional analysis.

Create Notebook Entry

A Notebook Entry is a snapshot of the oscilloscope at the moment it is taken: it captures the waveforms, their setups, and any measurements in process. As each new entry is created, it is added to the database of My Notebook Entries accessible from the LabNotebook dialog, where they can be recalled to the screen through Flashback Recall.

1. Choose File > LabNotebook to open the LabNotebook dialog.

LabNotebook 6/5/2014 2:01:01 PM	Preferences		🙁 CLOSE
Store Current DSO State into Notebook	My Notebook Entries 6/5/2014 2:00:37 PM 6/5/2014 2:01:01 PM	Restore DSO to Stored State Flashback (Recall) Delete	
		Delete All	

- 2. Touch Create.
- 3. Optionally, Enter Report Title and Description.

The default title is the date and time stamp. You can leave this as is, append some descriptive text to it, or completely remove it from your title.

NOTE: By default, you will be prompted to title and annotate notebook entries as they are created. You can <u>configure LabNotebook preferences</u> so that these steps are skipped in order to streamline the creation process. To update entries at a later time, select the entry from the list of Notebook Entries, then open the tab of the same name that appears behind the LabNotebook dialog.

Print to Notebook Entry

The front panel Print button can be configured to capture the display and create a new Notebook Entry. This is a convenient way to create new Notebook Entries as you work.

To configure the Print button for Notebook Entries, go to **File > LabNotebook > Preferences tab** and check **Create Entry when Hardcopy Pressed**.

Flashback Recall

Once a Notebook Entry is made, you can recall it at any time using Flashback Recall. The recall includes waveforms and oscilloscope settings, so you can analyze the inputs that resulted in that capture.

- 1. Choose File > LabNotebook to open the LabNotebook dialog.
- 2. Select the Notebook and Notebook Entry from the lists.
- 3. Touch the Flashback Recall button.
- 4. To exit Flashback Recall, touch the **Undo** button at the far right of the menu bar.

Some result data not included in Flashback Recall are:

- Persistence data (although it is saved in with the Notebook Entry).
- Floating point waveforms resulting from certain math operations that have much higher resolution than 16-bits. This extra resolution is not preserved when traces are recalled using Flashback.
- **Cumulative Measurements** in process when Flashback Recall is entered. When Flashback is used, they lose their history and show instead only the results from the stored waveforms, not including any data taken from interim acquisitions.

Configure LabNotebook Preferences

To configure the behavior of the LabNotebook tool, on the menu bar, choose **File > Lab Notebook**, then touch the **Preferences** tab.

LabNotebook 6/5/2014 2:01:01 PM	Preferences	CLOSE
Miscellaneous	Hardcopy	
Prompt for Entry Title Before Saving	Use Print Colors	
Create Entry when Hardcopy Pressed	Hardcopy Area _Grid Area Only	

Select/deselect the following options:

Prompt for Entry Title Before Saving opens the LabNotebook dialog when a new entry is created. You can elect to name notebook entries using only the date/timestamp by leaving this box unchecked.

Create Entry When Hardcopy Pressed configures the front panel print button to create a new notebook entry whenever it is pressed.

Use Print Colors outputs waveforms on a white background. This option helps save ink/toner when printing.

Hardcopy Area determines how much of the screen image is included in the report: grid area only, grid area plus dialog, whole screen. Touch the field and choose from the pop-up menu.

Maintenance

Cleaning

Clean only the exterior of the instrument using a soft cloth moistened with water or an alcohol solution. Do not use harsh chemicals or abrasive elements. Under no circumstances submerge the instrument or allow moisture to penetrate it. Avoid electric shock by unplugging the power cord from the AC outlet before cleaning.

CAUTION. Do not attempt to clean internal parts. Refer to qualified service personnel.

Fuse Replacement

Disconnect the power cord before inspecting or replacing the fuse. Open the fuse holder (located at the rear of the instrument below the AC power inlet) using a small, flat-bladed screwdriver. Replace the old fuse with a new 5 x 20 mm T-rated 3.15 A/250 V fuse. Close the fuse holder before powering on.

WARNING. For continued fire protection at all line voltages, replace the fuse with one of the specified type and rating only. Always disconnect the power cord before replacing the fuse.

Calibration

The oscilloscope is calibrated at the factory prior to being shipped. This calibration is run at 23° C (\pm 2° C) and is valid for temperatures \pm 5° C of the original calibration temperature. Within this temperature range the oscilloscope will meet all of the specifications.

The oscilloscope will offer you two calibration options whenever the temperature ranges outside this limit:

- **Calibrate All**possible combinations of vertical and horizontal settings at the current temperature. This calibration is valid for the current temperature ± 5° C and takes about 120minutes.
- Calibrate Current Setting (vertical and horizontal). This calibration is valid for only these settings at the current temperature ± 5° C and takes under 30 seconds.

CAUTION. It is required that all inputs be removed from the oscilloscope prior to performing calibration.

Schedule an annual factory calibration as part of your regular maintenance. Contact us about extended warranty, calibration, and upgrade plans available for purchase.

Touch Screen Calibration

Periodically calibrate the touch screen to maintain its accuracy and responsiveness. We recommend that you use a stylus rather than your finger for this procedure.

- 1. From the menu bar, choose Utilities > Utilities Setup.
- 2. On the Utilities main dialog, touch Touch-Screen Calibration.
- 3. Following the prompts, touch as close as possible to the center of each cross that appears on the screen until the calibration sequence is complete.

Reboot Oscilloscope

To reboot the oscilloscope, which includes restarting the OS:

- 1. Shut down the instrument by choosing File > Shutdown.
- 2. Wait 10 seconds, then press the Power button on the front of the oscilloscope.

Adding an Option Key

Many optional software packages are available to extend the Analysis functions of the oscilloscope. When you purchase an option, you will receive a Key Code by email that enables the new functionality.

To install the key and activate the software:

1. From the menu bar, choose **Utilities > Utilities Setup**, then touch the **Options tab**.

2. Touch Add Key.

The Virtual Keyboard appears onscreen

3. Use the VIrtual Keyboard to type the Key Code in the **Enter Option Key** field, then touch **O.K.** on the keyboard to enter the information.

The Key Code is added to the list of Installed Option Keys. You can use the Up/Down buttons to scroll the list. The software option that each key activates is displayed below the list.

4. Restart the oscilloscope application: choose **File > Shutdown**, then double-click the **Start DSO** icon on the desktop.

WaveSurfer 3000 Firmware Update

Teledyne LeCroy frequently releases free firmware updates for X-Stream model oscilloscopes containing new product features and bug fixes. The X-Stream installer updates multiple components including the oscilloscope application, required DLLs, drivers, and low-level microcode for integrated circuits on the oscilloscope.

The firmware update procedure *does not* modify or delete any user data (setups, waveforms, screen captures, calibration constants, etc.) stored on the MicroSD card.

- 1. Visit our download page at teledynelecroy.com/support/softwaredownload and click the link to **Oscilloscope Downloads > Firmware Upgrades**.
- 2. Select your oscilloscope series and model number.
- 3. Enter your registration login information, or create a new account.
- 4. Click the download link, and choose to Save the installer to a USB storage device.
- 5. Insert the USB device into one of the ports on the front of the oscilloscope.
- 6. Go to Utilities > Utilities Setup and choose Update Firmware.
- 7. Browse to the installer file in the USB Disk folder, then click Upgrade.
- 8. When installation is complete, choose Reboot Now.

CAUTION. The installation may take several minutes, depending on the length of time since your last upgrade. **Do not power down the oscilloscope at any point during the installation process.**

Technical Support

Phone

Registered users can contact their local Teledyne LeCroy <u>service center</u> at the number listed in this manual to make Technical Support requests by phone or email.

Web

Teledyne LeCroy publishes a free Technical Library on its website. Manuals, tutorials, application notes, white papers, and videos are available to help you get the most out of your Teledyne LeCroy products.

- The Datasheet published on the product page contains the detailed product specifications.
- Oscilloscope System Recovery Tools and Procedures contains instructions for using Acronis® True Image® Home included with the oscilloscope.

You can also submit Technical Support requests via the website at:

teledynelecroy.com/support/techhelp.

Returning a Product for Service

Contact your local Teledyne LeCroy service center for calibration or other service. If the product cannot be serviced on location, the service center will give you a **Return Material Authorization (RMA) code** and instruct you where to ship the product. All products returned to the factory must have an RMA.

Return shipments must be prepaid. Teledyne LeCroy cannot accept COD or Collect shipments. We recommend air-freighting. Insure the item you're returning for at least the replacement cost.

- 1. Remove all accessories from the device. Do not include the manual.
- 2. Pack the product in its case, surrounded by the original packing material (or equivalent).
- 3. Label the case with a tag containing:
 - The RMA
 - Name and address of the owner
 - Product model and serial number
 - Description of failure or requisite service
- 4. Pack the product case in a cardboard shipping box with adequate padding to avoid damage in transit.
- 5. Mark the outside of the box with the shipping address given to you by Teledyne LeCroy; be sure to add the following:
 - ATTN: <RMA code assigned by Teledyne LeCroy>
 - FRAGILE

6. If returning a product to a different country:

- Mark the shipment as a "Return of US manufactured goods for warranty repair/recalibration."
- If there is a cost for the service, list the cost in the Value column and the original purchase price "For insurance purposes only."
- Be very specific about the reason for shipment. Duties may have to be paid on the value of the service.

Extended warranty, calibration, and upgrade plans are available for purchase. Contact your Teledyne LeCroy sales representative to purchase a service plan.

Contact Teledyne LeCroy

United States and Canada - World Wide Corporate Office Teledyne LeCroy Corporation 700 Chestnut Ridge Road Chestnut Ridge, NY, 10977-6499, USA Ph: 800-553-2769 / 845-425-2000 FAX: 845-578-5985 teledynelecroy.com Support: contact.corp@teledynelecroy.com Sales: customersupport@teledynelecroy.com

United States Protocol Solutions Group

Teledyne LeCroy Corporation 3385 Scott Boulevard Santa Clara, CA, 95054, USA FAX: 408-727-0800 teledynelecroy.com **Sales and Service:** Ph: 800-909-7211 / 408-727-6600 contact.corp@teledynelecroy.com **Support:** Ph: 800-909-7112 / 408-653-1260 psgsupport@teledynelecroy.com

European Headquarters

Teledyne LeCroy SA 4, Rue Moïse Marcinhes Case postale 341 1217 Meyrin 1 Geneva, Switzerland Ph: + 41 22 719 2228 / 2323 / 2277 FAX: +41 22 719 2233 contact.sa@teledynelecroy.com applications.indirect@teledynelecroy.com teledynelecroy.com/europe **Protocol Analyzers:** Ph: +44 12 765 03971

Singapore

Genetron Singapore Pte Ltd. 37 Kallang Pudding Road, #08-08 Tong Lee Building Block B Singapore 349315 Ph: ++ 65 9760-4682

China

Teledyne LeCroy Corporation Beijing Rm. 2001 Unit A, Horizon Plaza No. 6, Zhichun Road, Haidian District Beijing 100088, China Ph: ++86 10 8280 0318 / 0319 / 0320 FAX:++86 10 8280 0316 **Service:** Rm. 2002 Ph: ++86 10 8280 0245

Taiwan

LeColn Technology Co Ltd. Far East Century Park, C3, 9F No. 2, Chien-8th Road, Chung-Ho Dist., New Taipei City, Taiwan Ph: ++ 886 2 8226 1366 FAX: ++ 886 2 8226 1368

Korea

Teledyne LeCroy Korea 10th fl.Ildong Bldg. 968-5 Daechi-dong, Gangnam-gu Seoul 135-280, Korea Ph: ++ 82 2 3452 0400 FAX: ++ 82 2 3452 0490

Japan

Teledyne LeCroy Japan Hobunsya Funchu Bldg, 3F 3-11-5, Midori-cho, Fuchu-Shi Tokyo 183-0006, Japan Ph: ++ 81 4 2402 9400 FAX: ++ 81 4 2402 9586 teledynelecroy.com/japan

Certifications

EMC Compliance

EC Declaration of Conformity- EMC

The oscilloscope meets intent of EC Directive 2004/108/EC for Electromagnetic Compatibility. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities:

EN 61326-1:2013, EN 61326-2-1:2013 EMC requirements for electrical equipment for measurement, control, and laboratory use. ¹

ELECTROMAGNETIC EMISSIONS:

EN 55011:2010, Radiated and Conducted Emissions Group 1, Class A ²³

EN 61000-3-2/A2:2009 Harmonic Current Emissions, Class A

EN 61000-3-3:2008 Voltage Fluctuations and Flickers, Pst = 1

ELECTROMAGNETIC IMMUNITY:

EN 61000-4-2:2009 Electrostatic Discharge, 4 kV contact, 8 kV air, 4 kV vertical/horizontal coupling planes ⁴

EN 61000-4-3/A2:2010 RF Radiated Electromagnetic Field, 3 V/m, 80-1000 MHz; 3 V/m, 1400 MHz - 2 GHz; 1 V/m, 2 GHz - 2.7 GHz

EN 61000-4-4/A1:2010 Electrical Fast Transient/Burst, 1 kV on power supply lines, 0.5 kV on I/O signal data and control lines ⁴

EN 61000-4-5:2006 Power line Surge, 1 kV AC Mains, L-N, L-PE, N-PE ⁴

EN 61000-4-6:2009 RF Conducted Electromagnetic Field, 3 Vrms, 0.15 MHz - 80 MHz

EN 61000-4-11:2004 Mains Dips and Interruptions, 0%/1 cycle, 70%/25 cycles, 0%/250 cycles 45

1 To ensure compliance with all applicable EMC standards, high quality shielded interface cables should be used.

2 Emissions which exceed the levels required by this standard may occur when the oscilloscope is connected to a test object.

3 This product is intended for use in nonresidential areas only. Use in residential areas may cause electromagnetic interference.

4 Meets Performance Criteria "B" limits of the respective standard: during the disturbance, product undergoes a temporary degradation or loss of function or performance which is self-recoverable.

5 Performance Criteria "C" applied for 70%/25 cycle voltage dips and for 0%/250 cycle voltage interruption test levels per EN61000-4-11.

EUROPEAN CONTACT:

Teledyne LeCroy Europe GmbH Waldhofer Str 104 D-69123 Heidelberg Germany Tel: (49) 6221 82700

Australia & New Zealand Declaration of Conformity- EMC

Oscilloscope complies with the EMC provision of the Radio Communications Act per the following standards, in accordance with requirements imposed by Australian Communication and Media Authority (ACMA):

EN 55011:2010 Radiated and Conducted Emissions, Group 1, Class A, in accordance with EN61326-1:2013 and EN61326-2-1:2013.

AUSTRALIA / NEW ZEALAND CONTACTS:

Vicom Australia Ltd.	Australia Vicom New Zealand Ltd.
1064 Centre Road	60 Grafton Road
Oakleigh, South Victoria 3167	Auckland
Australia	New Zealand

Safety Compliance

EC Declaration of Conformity- Low Voltage

The oscilloscope meets intent of EC Directive 2006/95/EC for Product Safety. Compliance was demonstrated to the following specifications as listed in the Official Journal of the European Communities:

EN 61010-1:2010 Safety requirements for electrical equipment for measurement, control, and laboratory use – Part 1: General requirements

EN 61010-2:030:2010 Safety requirements for electrical equipment for measurement, control, and laboratory use – Part 2-030: Particular requirements for testing and measuring circuits

The design of the instrument has been verified to conform to the following limits put forth by these standards:

- Mains Supply Connector: CAT II local distribution level, equipment connected to the mains supply (AC power source).
- Measuring Terminals: CAT I signal level, equipment measuring terminals connected to source circuits where measures are taken to limit transient voltages to an appropriately low level.
- Unit: Pollution Degree 2, operating environment where normally only dry, non-conductive pollution occurs. Conductivity caused by temporary condensation should be expected.
- Unit: Protection Class I, grounded equipment in which protection against electric shock is achieved by Basic Insulation and a connection to the protective ground conductor in the building wiring.

U.S. Nationally Recognized Agency Certification

The oscilloscope has been certified by Underwriters Laboratories (UL) to conform to the following safety standard and bears UL Listing Mark:

UL 61010-1 Third Edition - Safety standard for electrical measuring and test equipment.

Canadian Certification

The oscilloscope has been certified by Underwriters Laboratories (UL) to conform to the following safety standard and bears cUL Listing Mark:

CAN/CSA-C22.2 No. 61010-1-12. Safety requirements for electrical equipment for measurement, control and laboratory use.

Environmental Compliance

End-of-Life Handling

The instrument is marked with this symbol to indicate that it complies with the applicable European Union requirements to Directives 2002/96/EC and 2006/66/EC on Waste Electrical and Electronic Equipment (WEEE) and Batteries.

The instrument is subject to disposal and recycling regulations that vary by country and region. Many countries prohibit the disposal of waste electronic equipment in standard waste receptacles. For more information about proper disposal and recycling of your Teledyne LeCroy product, please visit teledynelecroy.com/recycle.

Restriction of Hazardous Substances (RoHS)

This product and its accessories conform to the 2011/65/EU RoHS2 Directive, as it is classified as Industrial Monitoring and Control Equipment (per Article 3, Paragraph 24) and is exempt from RoHS compliance until 22 July 2017 (per Article 4, Paragraph 3).

ISO Certification

Manufactured under an ISO 9000 Registered Quality Management System. Visit teledynelecroy.com to view the certificate.

Warranty

THE WARRANTY BELOW REPLACES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. TELEDYNE LECROY SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT OR OTHERWISE. THE CUSTOMER IS RESPONSIBLE FOR THE TRANSPORTATION AND INSURANCE CHARGES FOR THE RETURN OF PRODUCTS TO THE SERVICE FACILITY. TELEDYNE LECROY WILL RETURN ALL PRODUCTS UNDER WARRANTY WITH TRANSPORT PREPAID.

The product is warranted for normal use and operation, within specifications, for a period of three years from shipment. Teledyne LeCroy will either repair or, at our option, replace any product returned to one of our authorized service centers within this period. However, in order to do this we must first examine the product and find that it is defective due to workmanship or materials and not due to misuse, neglect, accident, or abnormal conditions or operation.

The oscilloscope's firmware has been thoroughly tested and is presumed to be functional. Nevertheless, it is supplied without warranty of any kind covering detailed performance.

Teledyne LeCroy shall not be responsible for any defect, damage, or failure caused by any of the following: a) attempted repairs or installations by personnel other than Teledyne LeCroy representatives or b) improper connection to incompatible equipment, or c) for any damage or malfunction caused by the use of non-Teledyne LeCroy supplies. Furthermore, Teledyne LeCroy shall not be obligated to service a product that has been modified or integrated where the modification or integration increases the task duration or difficulty of servicing the oscilloscope. Spare and replacement parts, and repairs, all have a 90-day warranty.

Products not made by Teledyne LeCroy are covered solely by the warranty of the original equipment manufacturer.

700 Chestnut Ridge Road Chestnut Ridge, NY 10977 USA

teledynelecroy.com