

5 A High Voltage Schottky Barrier Rectifier

DESCRIPTION

This UPS5100e3 in the Powermite3® package is a high efficiency Schottky rectifier that is also RoHS compliant offering high current/power capabilities previously found only in much larger packages. They are ideal for SMD applications that operate at high frequencies. In addition to its size advantages, the Powermite3® package includes a full metallic bottom that eliminates the possibility of solder flux entrapment during assembly and a unique locking tab act as an efficient heat path to the heat-sink mounting. Its innovative design makes this device ideal for use with automatic insertion equipment.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES

- Very low thermal resistance package
- RoHS Compliant with e3 suffix part number
- Guard-ring-die construction for transient protection
- Efficient heat path with Integral locking bottom metal tab
- Low forward voltage
- Full metallic bottom eliminates flux entrapment
- Compatible with automatic insertion
- Low profile-maximum height of 1mm

ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	100	V
RMS Reverse Voltage	$V_{R(RMS)}$	70	V
Average Rectified Output Current	Io	5	Α
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine wave Superimposed on Rated Load@ T _c =90 °C	I _{FSM}	100	А
Storage Temperature	T_{STG}	-55 to +150	°C
Junction Temperature	T_J	-55 to +125	°C

THERMAL CHARACTERISTICS

Thermal Resistance	_		
Junction-to-Case (bottom)	R _{eJC}	2.5	°C/ Watt
Junction to Ambient (1)	Rain	65	°C/ Watt

(1) When mounted on FR-4 PC board using 2 oz copper with recommended minimum foot print

Powermite 3™

APPLICATIONS/BENEFITS

- Switching and Regulating Power Supplies.
- Silicon Schottky (hot carrier) rectifier for minimal reverse voltage recovery
- Elimination of reverse-recovery oscillations to reduce need for EMI filtering
- Charge Pump Circuits
- Reduces reverse recovery loss with low I_{RM}
- Small foot print 190 X 260 mils (1:1 Actual size)
 See mounting pad details on pg 3

MECHANICAL & PACKAGING

- CASE: Void-free transfer molded thermosetting epoxy compound meeting UL94V-0
- FINISH: Annealed matte-Tin plating over copper and readily solderable per MIL-STD-750 method 2026 (consult factory for Tin-Lead plating)
- POLARITY: See figure (left)
- MARKING: S5100•
- WEIGHT: 0.072 gram (approx.)
- Package dimension on last page
- Tape & Reel option: 16 mm tape per Standard EIA-481-B, 5000 on 13" reel

5 A High Voltage Schottky Barrier Rectifier

		•	wise specified)			
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Forward Voltage (Note 1)		$I_F = 5 \text{ A}$, $T_L = 25 ^{\circ}\text{C}$		0.75	0.81	
	V_{F}	$I_F = 5 \text{ A}$, $T_L = 125 ^{\circ}\text{C}$		0.58	0.64	V
	VF	$I_F = 10 \text{ A}$, $T_L = 25 ^{\circ}\text{C}$		0.84	0.90	V
		$I_F = 10 \text{ A}$, $T_L = 125 ^{\circ}\text{C}$		0.67	0.73	
Reverse Break Down Voltage						
(Note 1)	V_{BR}	$I_R = 0.2 \text{ mA}$	100			V
,						
Reverse Current (Note1)		V _R = 100V, T _i = 25°C		15	200	μΑ
, ,	I_R	V _R = 100V, T _i = 125 °C		10	20	mA
Capacitance	Ст	$V_R = 4 \text{ V}; f = 1 \text{ MH}_Z$		150		рF

Note: 1 Short duration test pulse used to minimize self – heating effect.

5 A High Voltage Schottky Barrier Rectifier

Notes: 1. $T_A = T_{SOLDERING\ POINT}$, $R_{\Theta JS} = 2.5 \text{C/W}$, $R_{\Theta SA} = 0^{\circ} \text{C/W}$.

- 2. Device mounted on GETEK substrate, 2" x 2", 2 oz. copper , double-sided , cathode pad dimensions 0.75" x 1.0", anode pad dimensions 0.25" x 1.0". R_{ΘJA} in range of 20-35°C/W.
- 3. Device mounted on FRA-4 substrate, 2" x 2", 2 oz. copper, single-sided, pad layout $R_{\Theta,IA}$ in range of 65°C/W. See mounting pad below.

MOUNTING PAD LAYOUT

Mounting Pad Dimensions: inches [mm]

5 A High Voltage Schottky Barrier Rectifier

TAPE & REEL

13 INCH REEL

5 A High Voltage Schottky Barrier Rectifier

PACKAGE DIMENSIONS

POWERMITE®3			
Dim	Min	Max	
A	4.03	4.09	
В	6.40	6.61	
С	.889 NOM		
Ð	1.83 NOM		
E	1.10	1.14	
G	.178 NOM		
Н	5.01	5.17	
J	4.37	4.43	
K	.178 NOM		
L	.71	.77	
M	.36	.46	
P	1.73	1.83	
All Dimensions in mm			

Note:

Pins 1 & 2 must be electrically connected at the printed circuit board.