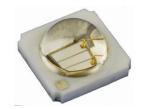


# High Luminous Efficacy Blue 457nm LED Emitter

# LZ1-00B202

## **Key Features**


- High Luminous Efficacy Blue 457nm LED Emitter
- Ultra-small foot print 4.4mm x 4.4mm
- Up to 1.5A drive current
- Surface mount ceramic package with integrated glass lens
- Low Thermal Resistance (6.0°C/W)
- Electrically neutral thermal path
- JEDEC Level 1 for Moisture Sensitivity Level
- Lead (Pb) free and RoHS compliant
- Reflow solderable
- Available on tape and reel or with MCPCB

## **Typical Applications**

- Indoor and outdoor Architectural Lighting
- Backlighting
- Full Color Displays
- Emergency Lighting
- Signal Lighting
- Horticulture

## Description

The LZ1-00B202 Blue LED emitter generates 50lumen nominal flux at 3.3W power dissipation in an extremely small package. With a 4.4mm x 4.4mm footprint, this package provides exceptional luminous flux per area. LED Engin's Blue LED offers ultimate design flexibility with separate electrical and thermal paths. The patent-pending design has unparalleled thermal and optical performance and excellent UV resistance. The high quality materials used in the package are chosen to optimize light output and minimize stresses which results in monumental reliability and lumen maintenance. The robust product design thrives in outdoor applications with high ambient temperatures and high humidity.





# Part number options

## Base part number

| Part number     | Description                        |
|-----------------|------------------------------------|
| LZ1-00B202-xxxx | LZ1 emitter                        |
| LZ1-10B202-xxxx | LZ1 emitter on Standard Star MCPCB |

# Bin kit option codes

| B2, Blue (465nm)                                       |   |     |                                                    |  |  |
|--------------------------------------------------------|---|-----|----------------------------------------------------|--|--|
| Kit number suffix Min flux Color Bin Range Description |   |     |                                                    |  |  |
| 0000                                                   | G | B03 | Flux bin G and above; full distribution wavelength |  |  |



## **Luminous Flux Bins**

Table 1:

| Bin Code | Minimum Luminous Flux ( $\Phi_V$ ) @ $I_F = 1000$ mA <sup>[1]</sup> (Im) | Maximum Luminous Flux ( $\Phi_V$ ) @ $I_F = 1000$ mA <sup>[1]</sup> (lm) |  |
|----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| G        | 38                                                                       | 48                                                                       |  |
| Н        | 48                                                                       | 60                                                                       |  |

Notes for Table 1:

# **Dominant Wavelength Bins**

Table 2:

| Bin Code | Minimum  Dominant Wavelength $(\lambda_D)$ @ $I_F = 1000$ mA $^{[1]}$ (nm) | Maximum Dominant Wavelength $(\lambda_D)$ @ $I_F = 1000$ mA $^{[1]}$ $(nm)$ |
|----------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| B03      | 453                                                                        | 460                                                                         |

Notes for Table 2:

# **Forward Voltage Bins**

Table 3:

| Bin Code | Minimum  Forward Voltage ( $V_F$ )  @ $I_F = 1000$ mA $^{[1]}$ ( $V$ ) | Maximum  Forward Voltage ( $V_F$ )  @ $I_F = 1000$ mA $^{[1]}$ (V) |  |
|----------|------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| 0        | 2.8                                                                    | 3.8                                                                |  |

Notes for Table 3:

Luminous flux performance is measured at 10ms pulse,  $T_c = 25^{\circ}$ C. LED Engin maintains a tolerance of  $\pm$  10% on flux measurements.

<sup>1.</sup> Dominant wavelength is measured at 10ms pulse, T<sub>C</sub> = 25°C. LED Engin maintains a tolerance of ± 1.0nm on dominant wavelength measurements.

Forward voltage is measured at 10ms pulse,  $T_C = 25^{\circ}C$ . LED Engin maintains a tolerance of  $\pm 0.04V$  for forward voltage measurements.



# **Absolute Maximum Ratings**

Table 4:

| Parameter                                                       | Symbol           | Value      | Unit |
|-----------------------------------------------------------------|------------------|------------|------|
| DC Forward Current at T <sub>J(MAX)</sub> =90°C [1]             | I <sub>F</sub>   | 1500       | mA   |
| DC Forward Current at T <sub>J(MAX)</sub> =135°C <sup>[1]</sup> | I <sub>F</sub>   | 1200       | mA   |
| DC Forward Current at T <sub>J(MAX)</sub> =150°C <sup>[1]</sup> | I <sub>F</sub>   | 1000       | mA   |
| Peak Pulsed Forward Current [2]                                 | I <sub>FP</sub>  | 2000       | mA   |
| Reverse Voltage                                                 | $V_R$            | See Note 3 | V    |
| Storage Temperature                                             | $T_{stg}$        | -40 ~ +150 | °C   |
| Junction Temperature                                            | T <sub>J</sub>   | 150        | °C   |
| Soldering Temperature [4]                                       | T <sub>sol</sub> | 260        | °C   |

#### Notes for Table 4:

- Maximum DC forward current is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 11 for current derating.
- Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.
- LEDs are not designed to be reverse biased.
- Solder conditions per JEDEC J-STD-020. See Reflow Soldering Profile Figure 3.
- LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ1-00B202 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.

# Optical Characteristics @ T<sub>C</sub> = 25°C

Table 5:

| Parameter                                                                | Symbol            | Typical          | Unit    |
|--------------------------------------------------------------------------|-------------------|------------------|---------|
| Luminous Flux (@ I <sub>F</sub> = 1000mA/ 1200mA/ 1500mA)                | Φν                | 50/ 57/ 68       | lm      |
| Radiant Flux (@ I <sub>F</sub> = 1000mA/ 1200mA/ 1500mA)                 | Φ                 | 1350/ 1485/ 1770 | mW      |
| PPF <sup>[1]</sup> 400-700nm (@ I <sub>F</sub> = 1000mA/ 1200mA/ 1500mA) |                   | 5.0/ 5.5/ 6.6    | umol/s  |
| Luminous Efficacy (@I <sub>F</sub> = 350mA)                              |                   | 20               | lm/W    |
| Wall Plug Efficiency (@I <sub>F</sub> = 350mA)                           |                   | 53               | %       |
| Dominant Wavelength <sup>[2]</sup>                                       | $\lambda_{D}$     | 457              | nm      |
| Peak Wavelength <sup>[2]</sup>                                           | $\lambda_{P}$     | 453              | nm      |
| Viewing Angle [3]                                                        | 2Θ <sub>1/2</sub> | 100              | Degrees |
| Total Included Angle [4]                                                 | Θ <sub>0.9V</sub> | 120              | Degrees |

### Notes for Table 5:

- PPF is Photosynthetic Photon Flux.
- Observe IEC 60825-1 class 2 rating for eye safety. Do not stare into the beam.
- Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is  $\frac{1}{2}$  of the peak value.
- Total Included Angle is the total angle that includes 90% of the total luminous flux.

# Electrical Characteristics @ $T_c = 25$ °C

Table 6:

| Parameter                                   | Symbol                      | Typical | Unit  |  |
|---------------------------------------------|-----------------------------|---------|-------|--|
| Forward Voltage (@ I <sub>F</sub> = 1000mA) | $V_{F}$                     | 3.3     | V     |  |
| Forward Voltage (@ I <sub>F</sub> = 1200mA) | V <sub>F</sub>              | 3.4     | V     |  |
| Forward Voltage (@ I <sub>F</sub> = 1500mA) | V <sub>F</sub>              | 3.5     | V     |  |
| Temperature Coefficient of Forward Voltage  | $\Delta V_{F}/\Delta T_{J}$ | -2.4    | mV/°C |  |
| Thermal Resistance<br>(Junction to Case)    | RØ <sub>J-C</sub>           | 6.0     | °C/W  |  |



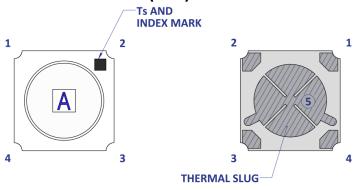
# **IPC/JEDEC Moisture Sensitivity Level**

Table 7 - IPC/JEDEC J-STD-020 MSL Classification:

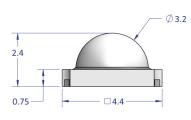
|       |           |                   |              | Soak Req        | uirements  |            |
|-------|-----------|-------------------|--------------|-----------------|------------|------------|
|       | Floo      | r Life            | Stan         | dard            | Accel      | erated     |
| Level | Time      | Conditions        | Time (hrs)   | Conditions      | Time (hrs) | Conditions |
| 1     | Unlimited | ≤ 30°C/<br>85% RH | 168<br>+5/-0 | 30°C/<br>85% RH | n/a        | n/a        |

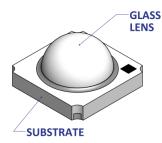
#### Notes for Table 7:

# **Average Lumen Maintenance Projections**


Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original light output remaining at a defined time period.

Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, above 70% Lumen Maintenance at 50,000 hours of operation at a forward current of 1000 mA. This projection is based on constant current operation with junction temperature maintained at or below 125°C.


The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer's exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor's facility.




# **Mechanical Dimensions (mm)**



| Pin O            | ut (Type 2) <sup>[2]</sup> |  |
|------------------|----------------------------|--|
| Pad              | Function                   |  |
| 1                | Anode                      |  |
| 2                | Cathode                    |  |
| 3                | Cathode                    |  |
| 4                | Anode                      |  |
| 5 <sup>[3]</sup> | Thermal                    |  |





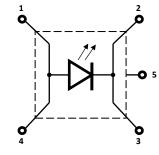



Figure 1: Package outline drawing.

#### Notes for Figure 1:

- 1. Unless otherwise noted, the tolerance = ± 0.20 mm.
- 2. This emitter pin-out is reversed to that of LZ1-00xx00 and LZ1-00Rx02.
- 3. Thermal contact, Pad 5, is electrically neutral.

# **Recommended Solder Pad Layout (mm)**

# Non-pedestal MCPCB Design

# 4X 1.47 1 4X 0.4 X 45.0° 2 4X (5.41) 4X 0.4 X 45.0° 4X 2.704

## **Pedestal MCPCB Design**

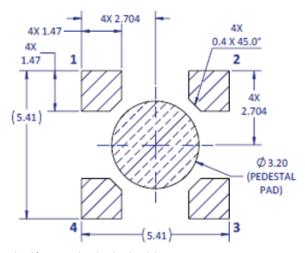



Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad for non-pedestal and pedestal design.

#### Note for Figure 2a:

- 1. Unless otherwise noted, the tolerance =  $\pm$  0.20 mm.
- 2. Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering the overall system thermal resistance.
- 3. LED Engin recommends x-ray sample monitoring for solder voids underneath the emitter solder pins, especially the thermal pad. The total area covered by solder voids should be less than 20% of the total emitter thermal pad area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to higher failure rates due to thermal over stress.
- 4. This emitter is compatible with all LZ1 MCPCBs provided that the MCPCB design follows the recommended solder mask layout (Figure 2b).



# **Recommended Solder Mask Layout (mm)**

## **Non-pedestal MCPCB Design**

# 4X 2.450 0.43 X 45.0° 4X 1.20 4X 2 1.20 4X 2.450 (4.90)Ø3.20

4.90

## **Pedestal MCPCB Design**

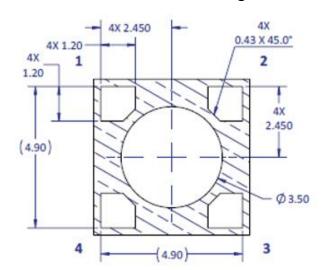



Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad for non-pedestal and pedestal design.

Note for Figure 2b:

4

Unless otherwise noted, the tolerance =  $\pm$  0.20 mm.

# **Recommended 8mil Stencil Apertures Layout (mm)**

3

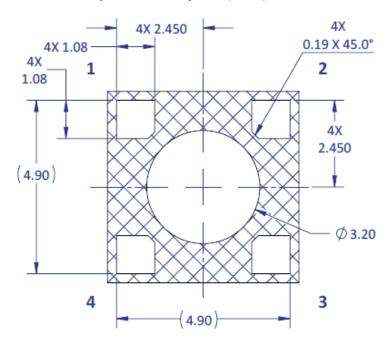



Figure 2c: Recommended solder mask opening for anode, cathode, and thermal pad for non-pedestal and pedestal design.

Note for Figure 2c:

Unless otherwise noted, the tolerance =  $\pm$  0.20 mm.



# **Reflow Soldering Profile**

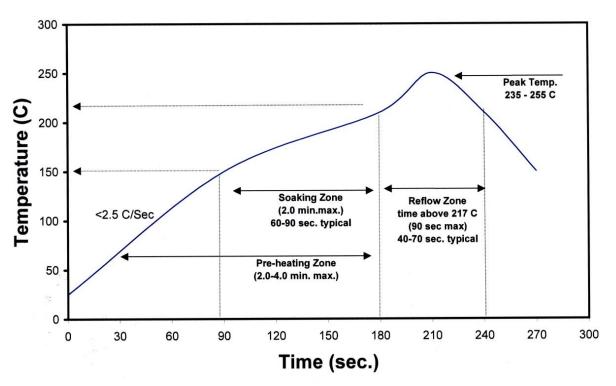



Figure 3: Reflow soldering profile for lead free soldering.

# **Typical Radiation Pattern**

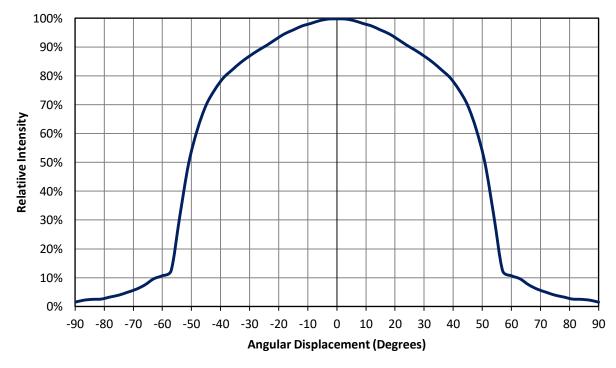



Figure 4: Typical representative spatial radiation pattern @  $T_C$  = 25°C.



# **Typical Relative Spectral Power Distribution**

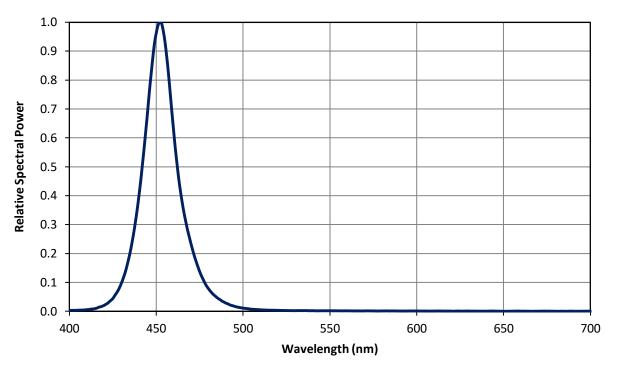



Figure 5: Relative spectral power vs. wavelength @  $T_C = 25$ °C.

# **Typical Forward Current Characteristics**

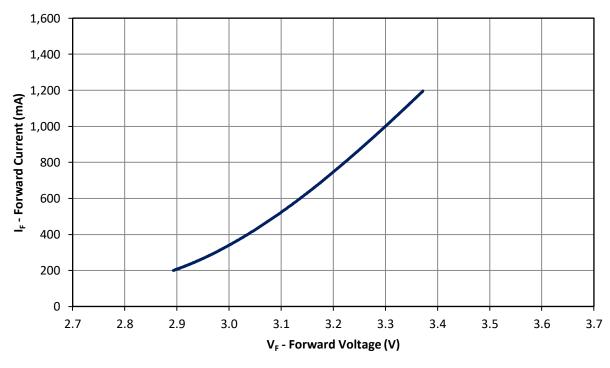



Figure 6: Typical forward current vs. forward voltage @  $T_C = 25$ °C.



# **Typical Relative Light Output over Current**

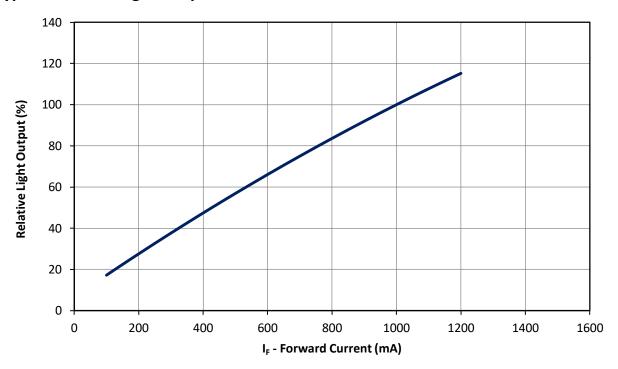



Figure 7: Typical relative light output vs. forward current @  $T_C$  = 25°C.

# **Typical Relative Light Output over Temperature**

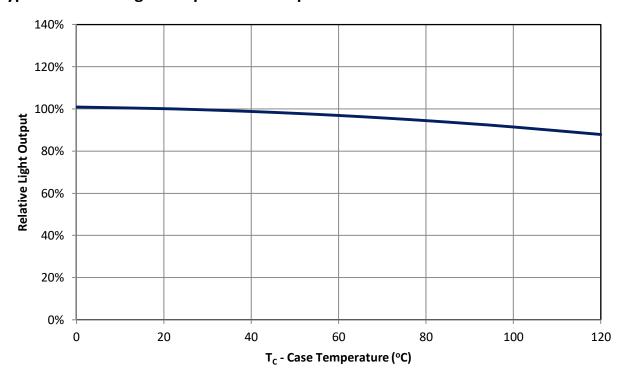



Figure 8: Typical relative light output vs. case temperature.



# **Typical Dominant Wavelength Shift over Current**

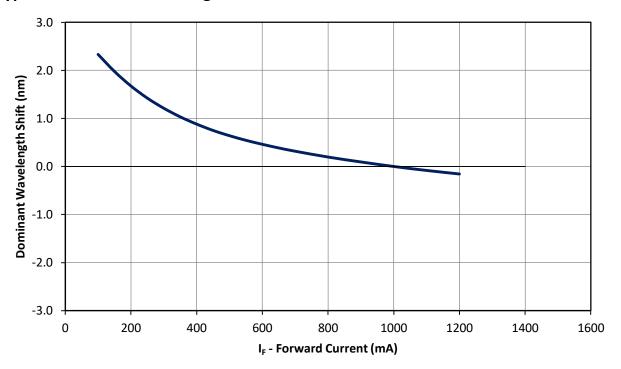



Figure 9: Typical dominant wavelength shift vs. forward current @  $T_C$  = 25°C.

# **Typical Dominant Wavelength Shift over Temperature**

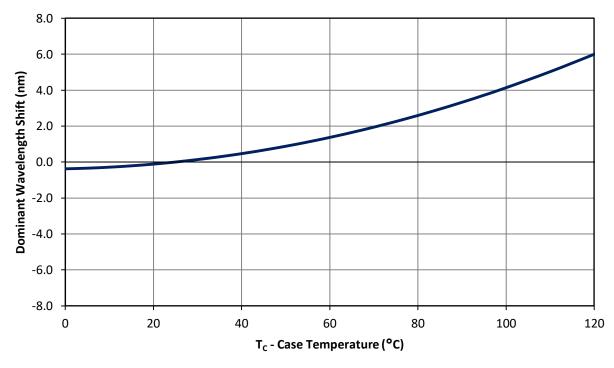



Figure 10: Typical dominant wavelength shift vs. case temperature.



# **Current De-rating**

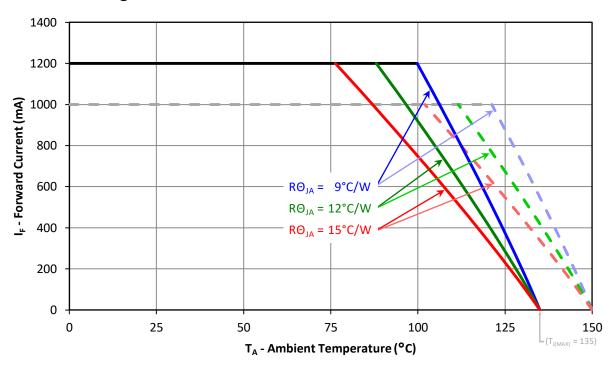



Figure 11: Maximum forward current vs. ambient temperature.

## Notes for Figure 11:

- 1.  $R\Theta_{J-C}$  [Junction to Case Thermal Resistance] for the LZ1-00B202 is typically 6.0°C/W.
- $2. \qquad \mathsf{RO}_{J\text{-}A} \ [\mathsf{Junction} \ \mathsf{to} \ \mathsf{Ambient} \ \mathsf{Thermal} \ \mathsf{Resistance}] = \mathsf{RO}_{J\text{-}C} + \mathsf{RO}_{C\text{-}A} \ [\mathsf{Case} \ \mathsf{to} \ \mathsf{Ambient} \ \mathsf{Thermal} \ \mathsf{Resistance}].$



# **Emitter Tape and Reel Specifications (mm)**

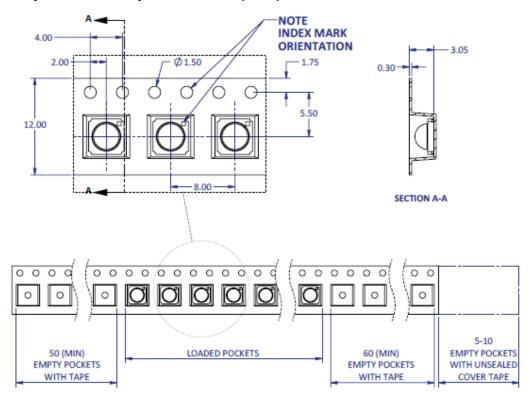



Figure 12: Emitter carrier tape specifications (mm).

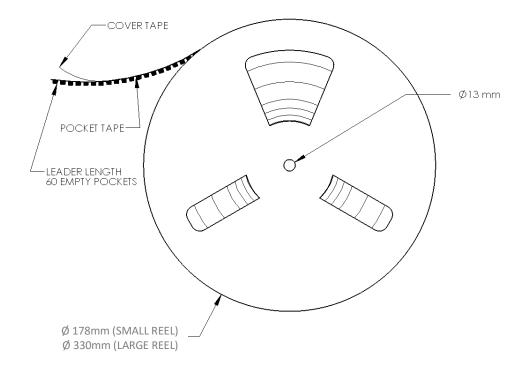



Figure 13: Emitter reel specifications (mm).

#### Notes:

- Small reel quantity: up to 500 emitters
- 2. Large reel quantity: 501-2500 emitters.
- 3. Single flux bin and single wavelength bin per reel.



# LZ1 MCPCB Family

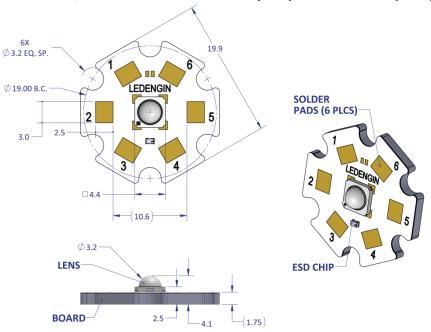
| Part number | Type of MCPCB  | Diameter<br>(mm) | Emitter + MCPCB Thermal Resistance (°C/W) | Typical V <sub>F</sub> (V) | Typical I <sub>F</sub><br>(mA) |
|-------------|----------------|------------------|-------------------------------------------|----------------------------|--------------------------------|
| LZ1-1xxxxx  | 1-channel Star | 19.9             | 6.0 + 1.5 = 7.5                           | 3.3                        | 1000                           |

## **Mechanical Mounting of MCPCB**

- MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking.
- To avoid MCPCB bending:
  - o Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.
  - Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending.
  - o It is recommended to always use plastics washers in combinations with the three screws.
  - o If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again.

## Thermal interface material

- To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink.
- There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal epoxies. An example of such material is Electrolube EHTC.
- It is critical to verify the material's thermal resistance to be sufficient for the selected emitter and its operating conditions.
- It is recommended to verify thermal design by measuring case temperature (Tc) during design phase.


## Wire soldering

- To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150°C. Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W.
- It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601)



# LZ1-1xxxxx

# 1 channel, Standard Star MCPCB (1x1) Dimensions (mm)



#### Notes:

- Unless otherwise noted, the tolerance =  $\pm$  0.2 mm.
- Slots in MCPCB are for M3 or #4-40 mounting screws.
- LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.
- LED Engin recommends using thermal interface material when attaching the MCPCB to a heat sink.
- The thermal resistance of the MCPCB is:  $R\Theta_{\text{C-B}}\,1.5^{\circ}\text{C/W}$

# Components used

MCPCB: HT04503 (Bergquist)

ESD/TVS diode: BZT52C5V1LP-7 (Diodes, Inc., for 1 LED die)

> VBUS05L1-DD1 (Vishay Semiconductors, for 1 LED die)

| Pad layout |              |            |           |  |  |  |
|------------|--------------|------------|-----------|--|--|--|
| Ch.        | MCPCB<br>Pad | String/die | Function  |  |  |  |
| 1          | 1,2,3        | 1/A        | Cathode - |  |  |  |
| 1          | 4,5,6        | 1/A        | Anode +   |  |  |  |



## **Company Information**

LED Engin, Inc., based in California's Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient lighting experiences. The LuxiGen™ Platform — an emitter and lens combination or integrated module solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin's packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions.

LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions.

LED Engin reserves the right to make changes to improve performance without notice.

Please contact <a href="mailto:sales@ledengin.com">sales@ledengin.com</a> or (408) 922-7200 for more information.