Wired Communications Edition 2001-11-20 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved. # Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. ### Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). ### Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. # SWITI Switching IC PEF 20450 MTSI PEF 20470 MTSI-L PEF 24470 MTSI-XL Version 1.3 Wired Communications PEF 20450 / 20470 / 24470 **PRELIMINARY** Revision History: 2001-11-20 DS 1 **Previous Version:** PEF 20450 / 20470 / 24470 V1.2, Preliminary Data Sheet DS1, 2001-04-04 | Page | Content | |-----------|---| | 12 | Table 5 updated | | 26 | Chapter 3.4.3 updated, added Figure 9 | | 28 | Chapter 3.7.1 and Chapter 3.7.2 updated | | 30 | Chapter 4.2 reworked | | 49 | Description of Configuration Command Register 1 and 2 (CMD1 and CMD2) updated | | 57 | Description of Interrupt Status Register 1 (ISTA1) reworked | | 58 | Description of Interrupt Error Status Register 1 and 2 (IESTA1 and IESTA2) reworked | | 60 | Description of Interrupt Error Mask Register 1 and 2 (INTEM1 and INTEM2) reworked | | 74 | Chapter 6.2 reworked | | 82 | Figure 18 updated | | 85 | Chapter 6.7.3 reworked | | 101 | Chapter 7.1 and Table 22 updated | | 104 | Table 23 updated | | 110 | Table 27 and Figure 39 updated | | 112 | Added Chapter, 7.5"Hardware Reset Timing" | | 115 | Table 32 updated. | | | | | | | | | | | | | For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com | Table of | Contents | Page | |---|--|--| | 1
1.1
1.2
1.3
1.4 | Overview Overview of Features Features in Detail Logic Symbol Standard PBX or CO Application | 5
6 | | 2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6 | Pin Description Pin Diagrams Pin Definitions and Functions Local Bus Interface (PCM) General Purpose Port Clock Signals JTAG Interface Microprocessor Interface Power Supply | 11 12 12 12 12 13 | | 3
3.1
3.2
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.1.4
3.3.1.5
3.3.1.6
3.3.2
3.3.3
3.3.4
3.4.1
3.4.2
3.4.2.1
3.4.2.2
3.4.3
3.4.4
3.5
3.6
3.7 | Architectural Description Functional Block Diagram Overview of Functional Blocks Switching Factory Switching Modes Minimum and Constant Delay Subchannel Switching Multipoint Switching Broadcast Switching Bidirectional Switching Message Mode Parallel Mode for Local Bus Switching Block Error Handling Analyze Connection and Data Memory Clock Generator and PLL General Overview Analog PLL (APLL) Functional Description Jitter Transfer Function Phase Alignment PLL Synchronization Loops Read SWITI Configuration with Indirect Register Addressing Power-On and Reset Behavior | 15 16 17 17 17 18 18 19 20 21 21 21 22 25 25 27 27 | | 3.7.1
3.7.2
4 | Hardware Reset | 28 | | Table of | Contents | Page | |----------|--|------| | 4.1 | Local Bus Interface (PCM) | 29 | | 4.2 | Data Rate | | | 4.3 | Microprocessor Interface | 31 | | 4.3.1 | Intel/Siemens or Motorola Mode | | | 4.3.2 | De-multiplexed or Multiplexed Mode | 31 | | 4.4 | General Purpose Port (GPIO) | | | 4.5 | General Purpose Clocks | 33 | | 4.5.1 | Frame Group Outputs | 34 | | 4.5.2 | GPCLK as Clock Outputs | | | 4.6 | JTAG (Boundary Scan) | | | 4.6.1 | Boundary Scan | 35 | | 4.6.2 | Test-Access-Port (TAP) | 35 | | 4.6.3 | TAP Controller | 36 | | 4.7 | Identification Code via µP Read Access | 38 | | 5 | Register Description | | | 5.1 | Register Overview For 8-Bit Interface | 40 | | 5.2 | Detailed Register Description For 8-bit Interface | 42 | | 5.3 | Register Overview For 16-Bit Interface | 67 | | 5.4 | Detailed Register Description For 16-Bit Interface | 68 | | 6 | Programming the Device | | | 6.1 | Read and Write Access | 73 | | 6.2 | Interrupt Handling | 74 | | 6.3 | Command and Register Overview | | | 6.4 | Indirect Configuration Register Access | 81 | | 6.5 | Initialization Procedure | | | 6.6 | Clocking Unit | 83 | | 6.7 | Local Bus (PCM) Line Interface | _ | | 6.7.1 | Standby Command | | | 6.7.2 | Determining Clock Rates | 84 | | 6.7.3 | Performing Bit Shifting | 85 | | 6.7.3.1 | Input Bit Shifting | 85 | | 6.7.3.2 | Output Bit Shifting | | | 6.8 | Global Clock Signals | | | 6.8.1 | Framing Groups | | | 6.9 | Read Time-Slot Value | | | 6.10 | Establish Connections | | | 6.10.1 | Establish 8-bit Connections | | | 6.10.2 | Subchannel Switching | | | 6.10.2.1 | Establish 4-bit Connections | | | 6.10.2.2 | Establish 2-bit Connections | | | 6.10.2.3 | Establish 1-bit Connections | | | 6.10.3 | Establish Broadcast Connections | 93 | | Table of | Contents | Page | |--|---|--| | 6.10.4
6.10.5
6.11
6.12
6.12.1
6.12.2
6.12.3
6.12.4
6.12.5
6.12.6
6.12.7
6.13 | Establish Subchannel Broadcast Connection Establish Multipoint Connection Send Messages Release Connections Release 8-bit Connections Release 4-bit Connections Release 2-bit Connections Release 1-bit Connections Release Broadcast Connection Release Subchannel Broadcast Connection Release Multipoint Connection Stop Sending Messages | . 95
. 96
. 97
. 97
. 97
. 98
. 99 | | 7 7.1 7.2 7.3 7.3.1 7.3.2 7.3.3 7.4 7.5 | Timing Diagrams PCM Interface Timing PCM Parallel Mode Timing Microprocessor Interface Timing Infineon/Intel Timing in De-Multiplexed Mode Infineon/Intel Timing in Multiplexed Mode Motorola Microprocessor Timing JTAG Interface Timing Hardware Reset Timing | 101
104
105
105
106
108
110 | | 8
8.1
8.2
8.3
8.4
8.5
8.6 | Electrical Characteristics Absolute Maximum Ratings Operating Range Crystal Oscillator DC Characteristics Capacitances AC Characteristics | 113
113
114
115
115
116 | | 9 | Package Outlines | 11/ | | List of Figu | ures | Page | |--------------|---|------| | Figure 1 | Logic Symbol | 9 | | Figure 2 | Standard PBX or CO Application | | | Figure 3 | Pin Configuration | 11 | | Figure 4 | Block Diagram | | | Figure 5 | Bidirectional Mode | | | Figure 6 | SWITI Clock Generator | 21 | | Figure 7 | Block Diagram of APLL | 23 | | Figure 8 | APLL - Jitter Transfer Function | 25 | | Figure 9 | Example of Phase Alignment | 26 | | Figure 10 | PCM Interface Configurations | 29 | | Figure 11 | PCM Bit Shifting | 30 | | Figure 12 | Multiplexed and in De-multiplexed Bus Mode | 32 | | Figure 13 | GPIO Port Configuration Example | 33 | | Figure 14 | Frame Signal Example | 34 | | Figure 15 | Order of Register Access | 72 | | Figure 16 | 8-bit µP Access Interrupt Structure | 74 | | Figure 17 | 16-bit μP Access Interrupt Structure | 75 | | Figure 18 | Initialization Procedure after Reset | 82 | | Figure 19 | Example: Input Bit Shifting | 85 | | Figure 20 | Example: Output Bit Shifting | 86 | | Figure 21 | Example Framing Groups | 87 | | Figure 22 | Example: 8-bit Connection | | | Figure 23 | Subchannel Address in Time-Slot | 90 | | Figure 24 | Example: 4-bit Connection | 90 | | Figure 25 | Example: 2-bit Connection | 91 | | Figure 26 | Example: 1-bit Connection | 92 | | Figure 27 | Example: Broadcast
Connection | | | Figure 28 | Example: Subchannel Broadcast Connection | 94 | | Figure 29 | Example: Multipoint Connection | 95 | | Figure 30 | Example: Send Message | | | Figure 31 | PCM Timing | | | Figure 32 | Parallel Mode Timing | | | Figure 33 | Infineon/Intel Read Cycle in De-Multiplexed Mode | | | Figure 34 | Infineon/Intel Write Cycle in De-Multiplexed Mode | | | Figure 35 | Infineon/Intel Read Cycle in Multiplexed Mode | | | Figure 36 | Infineon/Intel Write Cycle in Multiplexed Mode | | | Figure 37 | Motorola Read Cycle | | | Figure 38 | Motorola Write Cycle | | | Figure 39 | Boundary Scan Timing | | | Figure 40 | Hardware Reset Timing | | | Figure 41 | External Crystal | | | Figure 42 | I/O Wave Form for AC-Test | | | Figure 43 | Outlines of P-MQFP-100-2 | 117 | # PEF 20450 / 20470 / 24470 | List of Table | | Page | |---------------|--|-------| | Table 1 | Who should read what? | 2 | | Table 2 | SWITI Family Tree | 3 | | Table 3 | Local Bus Interface | 12 | | Table 4 | GPIO | 12 | | Table 5 | Clock Pins | 12 | | Table 6 | JTAG Interface | 13 | | Table 7 | Microprocessor Interface | 13 | | Table 8 | Power Supply Pins | 14 | | Table 9 | TAP Controller Instructions | 36 | | Table 10 | Boundary Scan IDCODE | 37 | | Table 11 | IDCODE via µP Read Access | 38 | | Table 12 | Register Overview For 8-Bit Interface | 40 | | Table 13 | Value Range for SPA/DPA | 41 | | Table 14 | Value Range for ITSA/OTSA | 41 | | Table 15 | Value Range for SCA | 41 | | Table 16 | Register Overview For 16-Bit Interface | 67 | | Table 17 | Affected Registers for Connection Commands | 76 | | Table 18 | Affected Registers for Configuration Commands | 77 | | Table 19 | Connection Command and Parameter Codes | 78 | | Table 20 | Configuration Command 1 and Parameter Codes | 79 | | Table 21 | Configuration Command 2 and Parameter Code | 79 | | Table 22 | PCM Timing | . 102 | | Table 23 | PCM Parallel Mode Timing | . 104 | | Table 24 | Infineon/Intel Timing in De-Multiplexed Mode | . 105 | | Table 25 | Infineon/Intel Timing in Multiplexed Mode | . 107 | | Table 26 | Motorola Timing | . 108 | | Table 27 | JTAG Interface Timing | . 110 | | Table 28 | Hardware Reset Timing | . 112 | | Table 29 | Absolute Maximum Ratings | . 113 | | Table 30 | Operating Range | . 113 | | Table 31 | External Capacitances for Crystal (Recommendation) | . 114 | | Table 32 | DC Characteristics | . 115 | | Table 33 | Input/Output Capacitances | . 115 | # **Preface** The Switching IC (SWITI) is a family of switching devices for a wide area of telecommunication and data communication applications. This document provides complete reference information according to chip interfaces, programming, internal architecture and applications. # **Organization of this Document** This Preliminary Data Sheet is divided into 9 chapters. It is organized as follows: # Chapter 1, Overview Gives a general description of the product and its family, lists the key features, and presents some typical applications. # Chapter 2, Pin Description Lists pin locations with associated signals, categorizes signals according to function, and describes signals. # Chapter 3, Description of Interfaces Rough overview of the internal architecture. # Chapter 4, Description of Interfaces Short introduction of used interfaces. # Chapter 5, Register Description Gives information about all registers accessible via the microprocessor interface according to address, short name, access, reset value and value range. ### Chapter 6. Programming the Device Gives a variety of examples how to programm the device, lists all available command and parameter values. # • Chapter 7, Timing Diagrams Contains timing diagrams. # Chapter 8, Electrical Characteristics Specification of the electrical parameters. # Chapter 9, Package Outlines Outlines of the available packages (P-MQFP-100-2). # Table 1 Who should read what? | Addressed Person | Relevant Chapters | |------------------|-------------------| | Programmer | 3, 5, 6 | | Board Designer | 2, 3, 4, 7, 8, 9 | # 1 Overview The new switching family, called SWITI, provides a complete and cost-effective solution for all switching systems. The family is divided in two sub-families, the MTSI family and the HTSI family. The Preliminary Data Sheet describes the functionality and characteristic of the MTSI devices. The devices can be used in today's switching applications, e.g. conventional PBXs and central offices, as well as in H.100/H.110 applications (only the HTSI family), which are the key to high performing CTI- and Voice-over-IP-applications, one of the most important future technologies in telecommunications. The main requirements of today's switching applications are met by the following features: - Constant delay e.g. to support wide band data switching, or channel bundling - Bit switching/subchannel switching to support applications such as mobile base stations, DECT, computer telephony In addition, the SWITI family provides new features to ensure a broad range of configurations to make it possible to adapt the device to all switching applications: - A compliant H.100/H.110 interface (HTSI) - 8-channel stream-to-stream switching capability (HTSI) - · Message mode, which allows to assign a preset value to any output time-slot - GPIO (General Purpose I/O) port, which is controlled from the external μP **SWITI family.** The SWITI family consists of 6 ICs with different switching capacities. The possible configurations are shown in **Table 2**. The HTSI versions provide an additional H.100 / H.110 interface, while the MTSIs are standard switching devices. All devices can be programmed easily, thus helping the designer/programmer to integrate the device into his application comfortably. Table 2 SWITI Family Tree | Name | Package | Sales
code | Connec-
tions | Local bus IN/OUT | H-Bus IO | |------------------|-------------|---------------------|------------------|------------------|----------| | HTSI-XL (H-Mode) | P-BGA-217-1 | PEF24471
HTSI-XL | 2048 | 16/16 | 32 | | HTSI-XL (M-Mode) | | PEF24471
HTSI-XL | | 32/32 | - | | HTSI-L (H-Mode) | P-BGA-217-1 | PEF20471
HTSI-L | 1024 | 16/16 | 32 | | HTSI-L (M-Mode) | | PEF20471
HTSI-L | | 32/32 | - | 3 # Table 2 SWITI Family Tree (cont'd) | Name | Package | Sales
code | Connec-
tions | Local bus IN/OUT | H-Bus IO | |---------------|--------------|---------------------|------------------|------------------|----------| | HTSI (H-Mode) | P-BGA-217-1 | PEF20451
HTSI | 512 | 16/16 | 32 | | HTSI (M-Mode) | | PEF20451
HTSI | | 32/32 | - | | MTSI-XL | P-MQFP-100-2 | PEF24470
MTSI-XL | 2048 | 16/16 | - | | MTSI-L | P-MQFP-100-2 | PEF20470
MTSI-L | 1024 | 16/16 | - | | MTSI | P-MQFP-100-2 | PEF20450
MTSI | 512 | 16/16 | - | # Switching IC SWITI ### PEF 20450 / 20470 / 24470 Version 1.3 CMOS # 1.1 Overview of Features ### General - Switching capacity of 512, 1024, or up to 2048 connections of different types between different buses - Programmable data rates of 2.048 Mbit/s, 4.096 Mbit/s, 8.192 Mbit/s, and 16.384 Mbit/s on per stream basis - Constant delay or minimum delay programmable on per connection basis - Subchannel switching ability of 1-bit, 2-bit, 4-bit wide time-slots - Programmable clock shift for local bus - Automatic data rate adaption - Optional 8-bit parallel input and/or 8-bit parallel output for first 8 lines of local bus - Broadcast capabilities - Multipoint switching ability - · Read and write access to all time-slots - Message mode (time-slot write access) - Programmable framing group - GPIO port - 8-bit µP-interface supports both Intel and Motorola mode - Optional 16-bit µP interface mode (instead of GPIO port) - On chip PLL for PCM bus clock operation (master/slave) - JTAG interface - Boundary scan according to IEEE 1149.1 - 3.3 V power supply - 5 V tolerant inputs/outputs | P-MQFP-100-2 | | |--------------|--| | Туре | Package | |---------------------------|--------------| | PEF 20450 / 20470 / 24470 | P-MQFP-100-2 | ### 1.2 Features in Detail ### **Flexible Data Rates** Each input and each output line of the local bus is programmable to operate at different data rates. The possible data rates are 2.048 Mbit/s, 4.096 Mbit/s, 8.192 Mbit/s, and 16.384 Mbit/s. # **Constant and Minimum Delay** Each connection independent of the addressed buses can be determined to be a constant delay or minimum delay connection. Constant delay means that any input time-slot or subchannel is available on the programmed output after 2 frames. Minimum delay means that the time-slot or subchannel appears at the output as soon as possible. The minimum delay depends on the chosen connections and the possible range is between 0 and 2 frames. # **Subchannel Switching** Each connection can be a 1-bit, 2-bit, 4-bit, or 8-bit connection. Subchannel switching has a constant delay of 2 frames. Subchannel switching is supported only for data rate of 2.048 Mbit/s, 4.096 Mbit/s and 8.192 Mbit/s. ### **Programmable Clock Shift** The position of time-slot 0 of each local bus input line can be programmed within the time-slot before and after the PFS rising edge in half bit steps. Also the position of time-slot 0 of all local bus output lines can be programmed within the first time-slot after the PFS rising edge. # **Automatic Data Rate Adaption** Connections are also possible between lines operating at different data rates. The programmer just specifies input and output line, time-slot, and if necessary, the subchannel. ### **Parallel Mode** The first 8 local bus input and output lines can be configured to one parallel input or output port respectively. In serial mode a time-slot is determined by 8 consecutive data clock cycles according to each line. In parallel mode a time-slot is determined by 1 data clock cycle according to the first 8 lines. ### **Broadcast** With this feature it is possible to distribute one incoming time-slot to different output time-slots. #
Multipoint Multipoint connections can be seen as the opposite of broadcast connections. Here it is possible to generate one output time-slot consisting of several input time-slots. The specified input time-slots are logically AND or OR connected (selectable) and have a constant delay of 2 frames. ### **Read Access** The programmer has access to any input time-slot. After issuing an appropriate command the arrival of the time-slot will be reported by interrupt. The value can be read from a dedicated register. For every read request the command has to be issued again. # **Message Mode (Write Access)** This feature allows a constant value to be sent to any given output time-slot. # **Framing Group** It is possible to specify up to 8 different framing signals of 8 kHz. The position of the rising edge and the pulse width can be programmed for each signal. The reference frame is determined by the PFS signal. The pulse parameters are programmed in half step resolution according to a 16.384 MHz clock. # **General Purpose Clocks** All 8 GPCLK lines can be configured as individual clock outputs with 8 kHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz and for test purposes with the internal frequency or the input frequency of the analog PLL (APLL). ### **GPIO Port** Each line of the general purpose input/output port can be configured to be either input or output. According to an input an edge causes an interrupt. The outputs can be influenced by write access via the microprocessor interface. Thus the user has the possibility to observe and influence additional signals for his application. # **Microprocessor Interface** All devices provide a standard 8-bit microprocessor interface operating in either Intel or Motorola mode. Optionally it is possible to configure the GPIO port as additional data lines to provide a 16-bit microprocessor interface. The use of the 16-bit µP interface reduces the number of write cycles required to configure a connection from 7 (in case of 8-bit µP interface) to 3 write cycles. # **Input/Output Tolerance** The MTSI can be used in a 5 V environment. Inputs and outputs are 3.3 V and 5 V tolerant. The outputs have TTL level driving capability. # 1.3 Logic Symbol The MTSI is a pure PCM switch and provides 16 PCM input lines and 16 PCM output lines. Figure 1 Logic Symbol # 1.4 Standard PBX or CO Application The MTSI or the HTSI in M-Mode can be used, just as the MTSC or MTSL, in standard private branch exchange or central office applications (**Figure 2**), e.g. in the switching network. Figure 2 Standard PBX or CO Application # PRELIMINARY Pin Description # 2 Pin Description The pin description gives an overview of the pin numbers, names, direction, position and function ordered by the different interfaces. Note: All unused input or I/O pins should be connected to V_{SS} to avoid leakage current. # 2.1 Pin Diagrams Figure 3 Pin Configuration # PRELIMINARY Pin Description # 2.2 Pin Definitions and Functions # 2.2.1 Local Bus Interface (PCM) Table 3 Local Bus Interface | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |------------------|-------------------------|-------------------|---|-------------------| | 56 | PFS | I/O | PCM Frame Synchronization Clock of 8 kHz | High Z | | 57 | PDC | I/O | PCM Data Clock of 2.048 Mbit/s, 4.096 Mbit/s, 8.192 Mbit/s, 16.384 Mbit/s | High Z | | 100-97,
94-83 | IN[15:0] ¹⁾ | I | PCM Receive Data Port 15 to 0 | | | 31-37,
40-48 | OUT[15:0] ²⁾ | 0 | PCM Transmit Data Port 15 to 0 | High Z | ^{1) 100} is IN15, 99 is IN14, 98 is IN13.. # 2.2.2 General Purpose Port # Table 4 GPIO | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |---------|-------------------------|-------------------|--|-------------------| | 28-21 | GPIO[7:0] ¹⁾ | I/O | General Purpose I/O port (only if 8-bit μP interface used) | Input | | | D[15:8] | | Upper 8 bit of 16-bit μP interface | | ^{1) 28} is GPIO7, 27 is GPIO6, 26 is GPIO5.. # 2.2.3 Clock Signals Table 5 Clock Pins | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |---------|------------|-------------------|---|-------------------| | 69 | ECLKI | I | External Crystal Input of 16.384 MHz, or 32.768 MHz
External Oscillator Input of 16.384 MHz, or 32.768 MHz | | | 70 | ECLKO | 0 | External Crystal Output of 16.384 MHz, or 32.768 MHz | | | 73-80 | GPCLK[7:0] | 0 | General Purpose Clock Output (Framing Signals) | High Z | ²⁾ 31 is OUT15, 32 is OUT14, 33 is OUT13.. # **Pin Description** Table 5Clock Pins (cont'd) | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |---------|--------|-------------------|--|-------------------| | 67 | NTWK_1 | I | Primary Network Timing Reference Input
Optionally the PLL can be synchronized to this input which
can be 8 kHz, 512 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz | | | 66 | NTWK_2 | I | Secondary Network Timing Reference Input
Optionally the PLL can be synchronized to this input which
can be 8 kHz, 512 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz | | ^{1) 73} is GPCLK7, 74 is GPCLK6, 75 is GPCLK5... # 2.2.4 JTAG Interface Table 6 JTAG Interface | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |---------|--------|-------------------|--|-------------------| | 51 | TCK | I | Test Clock
Single rate test data clock. | | | 52 | TMS | I | Test Mode Select A '0' to '1' transition on this pin is required to step through the TAP controller state machine. | | | 55 | TRST | I | Test Reset Resets the TAP controller state machine (asynchronous reset). | | | 53 | TDO | 0 | Test Data Out In the appropriate TAP controller state test data or a instruction is shifted out via this line. | High Z | | 54 | TDI | I | Test Data Input In the appropriate TAP controller state test data or a instruction is shifted in via this line. | | # 2.2.5 Microprocessor Interface Table 7 Microprocessor Interface | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |---------|-----------|-------------------|--|-------------------| | 60 | <u>CS</u> | I | Chip Select Active low. A "low" on this line selects all registers for read/write operations. | | | 3 | RD | I | Read (Intel/Infineon Mode) Indicates a read access. | | | | DS | | Data Strobe (Motorola Mode) During a read cycle, DS indicates that the device should place valid data on the bus. During a write access, DS indicates that valid data is on the bus. | | # **Pin Description** Table 7 Microprocessor Interface (cont'd) | Pin No. | Symbol | In (I)
Out (O) | Function | Reset
Behavior | |-----------------|----------------------|-------------------|---|-------------------| | 4 | WR | I | Write (Intel/Infineon Mode) Indicates a write access. | | | | R/W | | Read/Write (Motorola Mode) Indicates the direction of the data transfer on the bus. | | | 5 | ALE | I | Address Latch Enable Controls the on-chip address latch in multiplexed bus mode. While ALE is 'high', the latch is transparent. The falling edge latches the current address. ALE is also evaluated to determine the bus mode (ALE fix 'low' = Motorola, fix 'high' = Intel/Infineon) | | | 61 | MODE16 | I | Microprocessor Bus 8/16-Bit Interface Selection ('low' = 8 bit, 'high' = 16 bit) | | | 63 | IREQ/
IREQ | O
OD | Interrupt Request This pin is programmable to push/pull (active high or low) or open-drain. This signal is activated when SWITI requests an µP interrupt. When operated in open drain mode, multiple interrupt sources may be connected. | High Z | | 10-6 | A[4:0] ¹⁾ | I | Address Bus
When operated in address/data multiplex mode, the
address pins are externally connected to the D bus. | | | 20-17,
14-11 | D[7:0] ²⁾ | I/O | Data bus | | | 62 | RESET | I | System Reset
SWITI is forced to go into reset state. | | ^{1) 10} is A4, 9 is A3, 8 is A2... # 2.2.6 Power Supply Table 8 Power Supply Pins | ••• | | | | | | | |----------------------------------|------------------|-------------------|---|--|--|--| | Pin No. | Symbol | In (I)
Out (O) | Function | | | | | 1,15, 29,39,
50,59, 65,81, 95 | V _{DD} | I | Power Supply 3.3 V | | | | | 2,16, 30,38,
49,58, 64,82, 96 | V _{SS} | I | Digital Ground (0 V) | | | | | 72 | V _{DDA} | I | Power Supply Analog Logic 3.3 V
Used for PLL | | | | | 71 | V _{SSA} | I | Analog Ground (0 V) | | | | | 68 | R | | Reserved. Must be connected to ground | | | | ²⁾ 20 is D7, 19 is D6, 18 is D5.. # **Architectural Description** # 3 Architectural Description The following sections give a short overview of the functionality of the SWITI. # 3.1 Functional Block Diagram Figure 4 Block Diagram # **Architectural Description** ### 3.2 Overview of Functional Blocks # **Switching Factory** The switching factory is responsible for transferring and handling the incoming data streams to the assigned output channels and time-slots. The block includes a 512, 1024, or 2048 byte input and output data memory as well as an input and output connection memory. # Local bus
I/O Block The block is designed to handle the conversion of the data provided via the switching block and the external local bus (PCM) interface. It performs the PCM timing, the data rate selection and the tristate control. # **Microprocessor Interface Block** A standard 8-bit multiplexed or de-multiplexed μP interface is provided, compatible to Intel/Infineon Tech. (e.g. 80386EX, C166) and Motorola (e.g. 68040, 68340, 68360, 801) bus systems. If the GPIO port is not needed it can be used to provide a 16-bit μP interface. ### **GPIO Block** This block supports up to 8 external port lines each one configurable as input or output. A change on an input line may cause an interrupt (if not masked). The user has access to the port configuration and information via the appropriate registers of the µP interface. ### **PLL and Clock Block** The PLL generates all frequencies supporting the local bus (PCM). The internal phase-locked loop (PLL) generates all bus frequencies synchronized to a selected reference signal. The output frequency tolerance is equal to the input frequency tolerance. The PLL operates from a 16.384 MHz, or 32.768 MHz external crystal, oscillator. # **Architectural Description** # 3.3 Switching Factory As shown in **Figure 4** the switching factory comprises the input/output data memory and the input/output data handler with the programmed connections. The I/O controller handles all lines operating at the same or different data rate. To establish a connection the user must only program the source line with time-slot and the destination line with the time-slot. The internal controller (data handler) writes the connection in a connection descriptor list and stores this list in the connection data handler. The programming procedure is described in **Chapter 6**. The incoming time-slot will be stored in the input data memory controlled by the input handler. The output handler controls the constant, minimum delay and subchannel switching. # 3.3.1 Switching Modes The SWITI family supports a various number of switching modes. All modes are described in the following chapters. # 3.3.1.1 Minimum and Constant Delay Each connection independent of the addressed buses can be determined to be a constant delay or minimum delay connection. Constant delay means that any input time-slot or subchannel is available on the programmed output after 2 frames. Minimum delay means that the time-slot appears at the output as soon as possible. The minimum delay depends on the chosen connections and the possible range is between 0 and 2 frames, up to 3 frames in rare cases. An application note which describes the possible connection and minimum delays is available. # 3.3.1.2 Subchannel Switching Subchannel switching has a constant delay of 2 frames. Every connection can be 1-bit, 2-bit, 4-bit, or normal 8-bit connection. It is possible to combine every kind of subchannel connection, e.g. two 1-bit time-slots with one 4-bit time-slot to one output time-slot. Please refer to **Chapter 6.10.2** for a detailed description about the programming. # 3.3.1.3 Multipoint Switching As described in the overview the multipoint-switching allows to switch several input time-slots to one output time-slot. All input data are logical AND or OR connected. This mode is selectable with the multipoint connection command. The setup (logical AND or OR) for the last connection determines all other previous programmed multipoint connections. Multipoint switching has always a constant delay. Subchannel switching is not supported. # **Architectural Description** # 3.3.1.4 Broadcast Switching Broadcast switching allows to distribute one incoming time-slot to different output time-slots. The input and output mechanism is the same as the normal constant delay connection mode with subchannel switching. Minimum delay is also supported without subchannel switching. A table with the possible connections and minimum delays will be provided. The broadcast connection is programmed in the same way as a normal connection. The output time-slots can be released with the disconnect part of broadcast command. The last connection must be released with the normal disconnect command. ### **Subchannel Broadcast** It is possible to program one input time-slot as broadcast subchannel connections. That means the bits from the input time-slot are used in several broadcast connections related to one ore more output time-slots. The output time-slots must be released with the disconnect part of broadcast command. The last subchannel connection must be released with the normal disconnect command. (Please refer to **Chapter 6.10.4** for an example) # 3.3.1.5 Bidirectional Switching Bidirectional switching allows to install very easily a symmetrical bidirectional connection (Figure 5). The input and output mechanism is the same as the normal constant delay or minimum delay connection. The time to program a bidirectional connection is twice as the time to program a normal connection since the internal state machine has to calculate the belonging connection. There is a special command to program a bidirectional connection. A bidirectional connection can only be programmed on an available time-slot and input/output line. # **Architectural Description** Figure 5 Bidirectional Mode # 3.3.1.6 Message Mode The message mode allows to send a predefined 8-bit data value in a defined time-slot on a dedicated destination port. Message mode is started or stopped via register CCMD. The data value to be send is predefined in register MV. The time-slot and the destination port is is defined in register OTSA and register DPA. ### 3.3.2 Parallel Mode for Local Bus The parallel mode can be set with the 'set parallel mode' command in the configuration command register. This command set the first 8 input lines and the first 8 output lines of the local bus as parallel bus. If the parallel mode is enabled all included lines will be set to 2.048 Mbit/s automatically. If the parallel mode is disabled all lines will keep the data rate of 2.048 Mbit/s until a new data rate will be programmed for the selected line. # **Architectural Description** The internal S/P-converter is bypassed. The 8 bit data stream per time-slot is distributed on 8 data lines, one bit for every line. The least significant bit is assigned to line 0 and the most significant bit is assigned to line 7. To program a connection line 0 must be used for this special parallel data port. The bit shift value must only be programmed for port 0 and this value will be assigned to the other 7 ports automatically. The initialize sequence is described in **Chapter 6**. The switching data handling is the same as the data handling for constant delay or minimum delay mode. A timing diagram is provided in the timing diagram chapter ("PCM Parallel Mode Timing" on page 104.). # 3.3.3 Switching Block Error Handling The normal procedure to establish a connection is explained in **Chapter 6**. The way to program a new connection for a specific time-slot and data line is to release the connection and to program the new connection. The SWITI switching concept provides an internal error handling to detect errors in the switching chain caused by a programming error. A programming error can occur because of noises on the data lines, software errors, etc. A programming error is defined as follows: - if a non existing connection (minimum, constant delay, or message) will be released. - or if an existing minimum delay connection will be established. If a programming error or a connection memory overflow is detected the interrupt bit CON in the **IESTA2** register will be set. In this case the last connection which has been tried to establish or to release is not valid. The operation of the switching device is not affected and will be continued without any restrictions. For debug purposes the SWITI has the capability to write out the content of the complete connection memory and data memory via the microprocessor interface. This procedure is described in **Chapter 3.3.4**. It is recommended to track all established and connections with the specific customer application software. For debug purpose it is useful to compare the contents of the switching memory with the virtual connections in the application software. # 3.3.4 Analyze Connection and Data Memory With the special command "memory dump enable" in the connection command register (CCMD) it is possible to read the complete memory in a defined sequence from the CON register with a 8-bit μP access. This feature can be used only for analyze purposes. The command disables the complete switching function as far as all data lines are set to high impedance. If the command is set and after the specific recovery time (200 ns) the connection chain and data memory can be read sequentially by a μP access to the CON register. The internal controller writes the next 8-bit memory data in the CON register if # **Architectural Description** the μP read access is finished. That means there is a specific recovery time for the μP to the next CON read access. The internal memory dump controller reads the present memory contents of the input chain memory, data memory and output chain memory. During the memory dump the internal state machine will loose the synchronization with the external frame structure. Therefore a software reset must be issued and the device must be programmed again, except the clock configuration. Infineon Technologies provides a software driver to recalculate the chain and to recover the current connections. # 3.4 Clock Generator and PLL ### 3.4.1 General Overview The following figure gives a overview about the clock generator with the integrated PLL. Figure 6 SWITI Clock Generator The SWITI clock generator provides all necessary clock signals for the MTSI local bus (PCM) interface. Since the device is a PCM clock master capable device there is one digital PLL which can be locked to
different network reference signals (< 2.048 MHz). # **Architectural Description** The digital PLL synchronizes the external crystal or oscillator to the selected reference clock. The digital PLL (DPLL) will be bypassed if the selected reference signal is >= 2.048 MHz. The input signal for the analog PLL (APLL) is 2.048 MHz in normal operation mode. The APLL is used for multiplying the 2.048 MHz clock into a 49.152 MHz clock and to generate all clock signals for the PCM, and general purpose clock signals. The SWITI has an on-chip oscillator which allows the user to connect an external 16.384 MHz or 32.768 MHz crystal. Instead of using the crystal it is possible to assign a 16.384 MHz, or 32.768 MHz oscillator to the ECLKI pin. After the power-on or hardware reset the APLL is bypassed. The APLL will be synchronized (after approximately 750 µs) to the external crystal or external oscillator if the command 'set external frequency' is set. This command must be used otherwise the internal working frequency is equal to the external input frequency and the SWITI will not work properly. If the APLL is locked the status bit 'APLL' in the ISTA1 register will be set. Note: After the reset it is necessary to program the correct crystal or oscillator value as first programming step. Otherwise the operation frequency for the SWITI is not correct. # 3.4.2 Analog PLL (APLL) ### **Features** - Low cycle-to-cycle jitter < 1 ns - Natural frequency f_a = 15 kHz - Damping factor = 0.7 - Input Frequency = 2.048 MHz in any case - Output Frequency = 49.152 MHz, duty-cycle = 50 % - Rule behavior = change of output frequency in range of 0 ±10% in response to changes of input frequency - phase slope of output frequency equal to phase slope of input frequency Note: It is necessary to provide a "noise free" analog power (V_{DDA}/V_{SSA}) to reduce the internal jitter of the APLL. These pins must be decoupled from the digital power (VDD/VSS), see also the available Application Note "Layout Notes". # **Architectural Description** # 3.4.2.1 Functional Description Figure 7 Block Diagram of APLL The value of the output frequency depends of the programming of the n-divider. The chosen output frequency for the SWITI is 49.152 MHz and the input frequency is 2.048 MHz. The macro consists of a digital and an analog PLL which are working together. During start-up only the digital one is enabled and makes a coarse adjustment, so that the technology dependency of the circuit is compensated. Afterwards the digital PLL is disabled again and the analog one is switched on for normal operation. The digital PLL is of first order and consists of a frequency detector (FD), an up/down counter, a digital-to-analog converter (DAC) and a current controlled oscillator (CCO). The FD detects any frequency difference between the reference clock (fref: input clock fin = 2.048 MHz) and the divided oscillator clock. The output signal controls the counter. If the reference frequency is higher than the divided oscillator frequency the counter is increased. The counter output drives a current steering DAC which controls the input current of the internal oscillator. Its current rises and the output frequency increases until both frequencies are equal. # **Architectural Description** The digital PLL is enabled after reset or power up and is disabled after 750 μ s (lock time of PLL). The counter keeps its value and the DAC output current **irough** is constant until the digital PLL is reseted. The second order analog PLL consists of a phase/frequency detector (PFD), a charge pump (CP), a loop filter and the CCO. The PFD which is sensitive to the rising edge detects any phase or frequency difference between the input clock (fref) and the divided output clock (feedback) and generates a control signal proportional to the phase difference. The output signals up and down cause the charge pump to modulate the amount of charge in the low pass filter (VTOI) for the integral part (iint) and to feed current into the CCO for the proportional part (iprop). With these two currents and the DAC output irough the CCO is controlled. If feedback is leading fref, the oscillator is too fast. The down signal is activated and the CP subtracts some current iprop. When fref is in phase with the feedback the PLL will hold the control current at that level and phase lock will be achieved. Thus through this negative feedback arrangement, the PLL causes the feedback and fref signals to be equal with minimum phase offset. If the analog PLL becomes unstable, a signal pliko is generated which resets the digital PLL. # **Architectural Description** ### 3.4.2.2 Jitter Transfer Function Jitter transfers or jitter attenuation refers to the magnitude of jitter at the output of a device for a given amount of jitter at the input of the device. Input jitter is applied at various amplitudes and frequencies, and output jitter is measured with various filters depending on the applicable standards. **Figure 8** shows the jitter transfer function of the SWITI device. The cutoff frequency of the integrated low pass filter is $f_q = 15 \text{ kHz}$. Figure 8 APLL - Jitter Transfer Function # **Architectural Description** # 3.4.3 Phase Alignment If the phase alignment function is enabled all PLL output signal and the main divider are edge synchronized with the PLL clock input. If the selected reference signal is less than 2.048 MHz the edge synchronization resolution depends on the selected external crystal/oscillator frequency. If the phase alignment function is disabled the PLL output frequency (49.152 MHz) is edge synchronized with the PLL input frequency and the main divider output frequencies are edge synchronized with PLL output frequency. An example of phase alignment functionality is shown in Figure 9. Phase alignment is required to keep the output signals in phase relative to the input signals. After reset phase alignment is automatically activated in slave mode and turned off in master mode. Note: The phase alignment should be disabled for all reference frequencies < 2.048 MHz. Figure 9 Example of Phase Alignment # **Architectural Description** # 3.4.4 PLL Synchronization The PLL reference source can be selected from the primary reference master source (PFS, PDC, NTWK_1/_2). If the selected reference signal is less than 2.048 MHz the main digital PLL is used to synchronize the analog PLL. The digital PLL is sourced from the external oscillator, or crystal. In this case the analog PLL output frequency tolerance is equal to the external oscillator/crystal frequency tolerance. Furthermore the analog PLL can be sourced directly from the external oscillator, or crystal, or from the PDC input. All generated output frequencies will have the same tolerance as the selected input frequency. # 3.5 Loops The loop command in the configuration command register **CMD2** provides support for automatic PCM-PCM loops. All input lines are pad connected with the corresponding output line. After the loop disable command was set the lines will be set in high-impedance after approximately two frames. # 3.6 Read SWITI Configuration with Indirect Register Addressing Since the SWITI configuration can be programmed with defined instructions in the CMD1 and CMD2 registers it is possible to read the current configuration through the indirect access registers. The indirect addressing is started by writing one of the five read configuration commands in the CMD2 register. The five commands can be separated in two groups, internal configuration and external line configuration. The internal configuration, e.g. clock generator, IREQ pin can be read with the command "Read Configuration". The internal settings are decoded with the instruction bits I3..0. The data rate for the PCM interface can be read with the "Read Local Bus (PCM) Line Configuration" command. The "Read GPCLK Configuration" and "Read Bit/Clock Shift Configuration" must be issued to get the GPCLK line configuration and the bit shift value. The TSV and CON registers contain the required information after the internal read process is complete. The recovery time is 240 ns. To read the correct configuration data from the TSV register it is not allowed to use the command "Read Time-Slot Value" before the TSV register has been read. ### **Architectural Description** ### 3.7 Power-On and Reset Behavior ### 3.7.1 Hardware Reset There are two independent low active reset pins: RESET and TRST. If the RESET pin is activated, it immediately sets all outputs and I/O ports into tri-state, except the ECLKO pin. After the reset process the correct external frequency must be set with the command 'Set external frequency' accordingly. This command starts the configuration process for the APLL. The APLL is locked after 750 µs. During this period the APLL is bypassed and the internal frequency is 2.048 MHz. If the APLL is locked the internal frequency will be 49.152 MHz. Individual output sections must be enabled by setting the command in the configuration command register CMD1, or CMD2. Internally all state machines, counters and registers are cleared and set to their defined reset value. The RESET pin doesn't control the boundary scan register and TAP-controller. If the TRST pin is asserted the TAP-controller will go into the Test-Logic-Reset state and all boundary scan elements are bypassed. All outputs and I/O-pins are controlled by the core logic and are tristated according to the programmed functionality or the core reset condition (pin RESET). The hardware reset must be issued for a minimum of 1 µs, for more details please refer to the chapter "Hardware Reset Timing" on page 112. #### 3.7.2 Software Reset The software reset is accomplished by setting the 'Set Software Reset' command in the CMD2 register. The software reset clears the complete device except the clocking unit and the temporary microprocessor registers (e.g. CMD1). The software reset can be deactivated with the 'Set
Software Reset' command. During the software reset the microprocessor interface doesn't accept any other commands for a minimum of 1 µs. **Description of Interfaces** # 4 Description of Interfaces ### 4.1 Local Bus Interface (PCM) The local bus is a PCM interface consisting of input and output data lines (IN, OUT), a PCM data clock PDC and a frame synchronization signal PFS. Figure 10 PCM Interface Configurations The **PFS Frame Sync** is a 8 kHz signal and delimiting the frame. This input signal is used by the SWITI to determine the start of a frame. A frame is divided into 8-bit wide time-slots. The amount of time-slots within a frame depends on the selected data rate of PDC which can be 2.048 Mbit/s, 4.096 Mbit/s, 8.192 Mbit/s, 16.384 Mbit/s. The PFS input has a Schmitt-Trigger characteristic. The **PDC Data Clock** input supplies the SWITI with a data clock. It can be operated with 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz data rate clock depending on the selected **highest** data mode. The PDC clock signal must be equal or higher as the highest data rate. The PDC input has a Schmitt-Trigger characteristic. A clock slave **must receive** PFS and PDC whereas a clock master **drives** these signals. To enable or disable the signals for the clock master the command 'PCM Clock Input/ Output Selection' must be issued. The time-slots are transmitted and received via 16 input and 16 output lines (IN[15:0], OUT[15:0]). The input lines have a Schmitt-Trigger characteristic. The output lines have tristate outputs with push-pull characteristic. For every time-slot not participating to a connection the output is high impedance. With the special command "Local Bus (PCM) Standby" in the CMD2 register it is possible to set all PCM lines in a high impedance state during the normal operation mode. All PCM lines are in high impedance state after the reset process and must be enabled with the "Local Bus (PCM) Standby" command. All lines which are not participating on a switching operation are in high impedance state and the time-slot information on the input lines are discarded automatically. ### **Description of Interfaces** Figure 11 PCM Bit Shifting For **each** PCM input line the offset of time-slot zero can be adjusted in a range from 0 to 7 bit in half clock resolution before or after the PFS rising edge. For **all** output lines the offset of time-slot zero can be adjusted in a range from 0 to 7 bit in half clock resolution after the PFS rising edge. The resolution depends on the selected data rate that means the resolution doesn't depend on the PDC signal. After the reset process the bit shift is disabled for all lines. That means the time-slot 0 starts with the rising edge of PFS. All input data will be sampled with falling edge of the selected data rate and the output data are valid with the rising edge of the selected data rate. ### 4.2 Data Rate The MTSI provides the programming of different data rates for all data lines. All local bus lines can operate with 2.048 MHz, 4.096 MHz, 8.192 MHz, and 16.384 MHz having data rates of 2.048 Mbit/s, 4.096 Mbit/s, 8.192 Mbit/s and 16.384 Mbit/s. The input and output lines are independent of each other, i.e. for a given bus line the input and the output lines can be programmed with different data rates. The maximum aggregate data rate supported at the input and output bus lines is 262.144 Mbit/s, with all lines operating at 16.384 Mbit/s (i.e. 16 lines x 16.384 Mbit/s per line = 262.144 Mbit/s, as input and/or output). ### **Description of Interfaces** # 4.3 Microprocessor Interface A standard 8-bit multiplexed or non-multiplexed μP interface is provided. It is compatible to Intel/Siemens (e.g. 80386EX, C166) or Motorola (e.g. 68040, 68340, 68360, 801) bus systems. If the GPIO port is not needed it can be used to provide a 16-bit μP interface. The 16-bit mode is determined according to MODE16 input pin. MODE16 = '0' -> 8-bit interface MODE16 = '1' -> 16-bit interface This chapter describes how to configure the µP interface to each mode. ### 4.3.1 Intel/Siemens or Motorola Mode The Intel/Siemens or Motorola mode for the μP interface can be configured during the hardware reset process in conjunction with the ALE pin. - ALE permanently driven to 'low' => Motorola mode - ALE permanently driven to 'high' => Intel/Siemens mode - Edge on ALE => Intel/Siemens multiplexed mode A falling or rising edge on ALE during the normal operation selects the multiplexed mode immediately. With the hardware reset and the tied ALE pin it is possible to return to the Motorola or Intel/Siemens mode. # 4.3.2 De-multiplexed or Multiplexed Mode In both modes, the A-bus and the D-bus are used in parallel. The A-bus should be connected to the LSBs of AD-bus, coming from the μ P, also in multiplexed mode. The next figure describes the connection to the address and data buses in the different modes. Note: Motorola mode is used only with de-multiplexed AD bus. Intel/Siemens mode may be used with both, multiplexed or de-multiplexed AD bus. # **Description of Interfaces** Figure 12 Multiplexed and in De-multiplexed Bus Mode Note: In both modes only the 5 LSBs of A-bus or AD/bus are connected to the Address inputs. ### **Description of Interfaces** # 4.4 General Purpose Port (GPIO) This port consists of 8 lines each one configurable as input or output. A change on an input line may cause an interrupt (if not masked). The user has access to the port configuration and information via the appropriate registers of the μP interface. Figure 13 shows an example. Figure 13 GPIO Port Configuration Example # 4.5 General Purpose Clocks The SWITI provides 8 general purpose clock lines. With two independent commands in the CMD2 register the lines can be configured as frame group signals or individual clock signals. The last written command for a line is valid and controls the multiplexer. ### **Description of Interfaces** # 4.5.1 Frame Group Outputs Via 8 output lines it is possible to provide 8 different framing signals which are used for synchronization purpose. All signals have a period of 125 µs. Their offset can be programmed individually within the PFS determined frame in a resolution of 61 ns (i.e. 1/16.384 MHz). The default start point for the offset is the beginning of a frame (rising edge of PFS and the clock signal). The start point for the offset can be shifted for an half clock cycle, that means the second start point is determined with the rising edge of PFS and the next falling edge of the clock signal (as shown in **Figure 14**). The high time of the signal can also be programmed in steps of 61 ns. All frame signals can be controlled as high or low active. Figure 14 Frame Signal Example Figure 14 shows an example of a frame signal beginning with the rising edge of the 64th clock cycle with a length of 4 clock cycles. Further programming examples can be found in **Chapter 6.8.1**. # 4.5.2 GPCLK as Clock Outputs All 8 GPCLK lines can be configured as individual clock outputs with 8 kHz, 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz and for test purposes with the internal frequency or the input frequency of the analog PLL (APLL). All clock signals are generated from the analog PLL output frequency which is the internal frequency. The quality of all output frequency signals depends on the quality of the selected input PLL frequency. ### **Description of Interfaces** # 4.6 JTAG (Boundary Scan) The SWITI provides a fully IEEE 1149.1 compatible boundary scan support consisting of: - a complete boundary scan chain - a Test Access Port controller (TAP controller) - five dedicated pins: TCK, TMS, TDI, TDO and a TRST to asynchronously reset the TAP controller - one 32-bit IDCODE register # 4.6.1 Boundary Scan All pins except power supply and crystal are included in the boundary scan. Depending on the pin functionality one (input), two (output, enable) or three (input, output, enable) boundary scan cells are provided. The maximum clock rate at pin TCK is 10 MHz. # 4.6.2 Test-Access-Port (TAP) The following signal pins allow the boundary scan test logic to be accessed: - TCK - Test Clock input to which a central BSc test clock is applied. This BSc test clock is independent of the system clock. Clock phases are derived from this clock for test sequence control. - TMS - Test Mode Select control input for which the desired status changes at the TAP controller by applying a certain level (0/1) caused by the rising edge of TCK. - TDI - Test Data Input whose data is inserted into the test logic with the rising edge of the TCK. - TDO - Test Data Output with tristate capability which is only active during the SHIFT-IR and SHIFT-DR controller state, and whose data is driven with the falling edge of TCK. ### **Description of Interfaces** ### 4.6.3 TAP Controller The Test Access Port (TAP) controller implements the state machine defined in the JTAG standard IEEE 1149.1. Transitions on the pin TMS cause the TAP controller to perform a state change. The possible instructions are listed in the following table. Table 9 TAP Controller Instructions | Code | Instruction | Function | |------|----------------|---| | 0000 | EXTEST | External testing | | 0001 | IDCODE | Reading ID code | | 0100 | HIGHZ | High impedance state of all boundary scan outputs | | 0101 | SAMPLE/PRELOAD | Snap-shot testing | | 0110 | INTEST | Internal testing | | 0111 | CLAMP | Reading outputs | | 1111 | BYPASS | Bypass operation | The instruction length is four bit. **EXTEST** is used to verify the board interconnections. When the TAP controller is in the state "update DR", all output pins are updated with the falling edge of TCK. When it has entered state "capture DR" the levels of all input pins are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically done using the instruction SAMPLE/PRELOAD. ### **INTEST** supports internal chip testing. When the
TAP controller is in the state "update DR", all inputs are updated internally with the falling edge of TCK. When it has entered state "capture DR" the levels of all outputs are latched with the rising edge of TCK. The in/out shifting of the scan vectors is typically done using the instruction SAMPLE/PRELOAD. #### SAMPLE/PRELOAD The SAMPLE/PRELOAD instruction enables all signal pins (inputs and outputs) to be sampled during operation (SAMPLE) and the result to be shifted out through the shift BSc register. The function of the internal logic is not influenced by this instruction. While shifting out, the BSc cells can be serially loaded at the same time with defined values through TDI (PRELOAD). The SAMPLE/PRELOAD instruction selects the boundary scan register in normal mode. In state CAPTURE-DR data is loaded into the boundary scan register with the rising edge of TCK. In state UPDATE-DR the contents of the boundary scan register are written into the second register stage of the boundary scan ### **Description of Interfaces** register. This data become effective at the outputs only if an instruction has been activated that sets the BSc register to test mode: e.g. EXTEST or CLAMP. #### **IDCODE** The 32-bit identification register is serially read out via TDO. It contains the version number (4 bits), the device code (16 bits) and the manufacturer code (11 bits). The LSB is fixed to '1'... | Version Device Code | | Manufacturer Code | | Output | |---------------------|---------------------|-------------------|---|--------| | xxxx | xxxx xxxx xxxx xxxx | xxxx xxxx xxx | 1 | > TDO | ### Table 10 Boundary Scan IDCODE | | Version | Device Code | Manufacture Code | Bit0 | |---------|---------|---------------------|------------------|------| | MTSI | 0010 | 0000 0000 0110 1001 | 0000 1000 001 | 1 | | MTSI-L | 0010 | 0000 0000 0110 1010 | 0000 1000 001 | 1 | | MTSI-XL | 0010 | 0000 0000 0110 1011 | 0000 1000 001 | 1 | ### **CLAMP** The BSc register is in test mode. For the duration of the CLAMP instruction, the BYPASS register is selected so that a minimal shift path is created. During SHIFT-DR data can be shifted through the BYPASS register. The contents of the BSc register does not change during the UPDATE-DR state. #### **HIGHZ** The HIGHZ instruction disables all outputs if switched to high impedance state. The outputs are switched to high impedance in state UPDATE-IR. The outputs are redefined according to the next new instruction if another instruction has become active with UPDATE-IR. The selected test data register is the BYPASS register. #### **BYPASS** A bit entering TDI is shifted to TDO after one TCK clock cycle, e.g. to skip testing of selected ICs on a printed circuit board. ### **Description of Interfaces** # 4.7 Identification Code via µP Read Access The SWITI offers two possibilities to read the identification code. - via the JTAG port as described in Chapter 4.6 - or via the processor interface After a hardware reset the identification code is stored in the **General Purpose Interrupt Register** (**GPI**) and can be read via the processor interface. The high nibble is the version number and the low nibble is equal to the low nibble of the device code shown in **Table 11**. For the 8-bit μ P interface configuration the first write access to the General Purpose Mask Register (**GPM**) will reset the register **GPI** to 00_H . If the μ P interface is configured as a 16-bit interface the IDCODE can always be read from the **GPI** register, that means the **GPI** register will not be reset. The IDCODE for the μP read access is shown in **Table 11**. Table 11 IDCODE via µP Read Access | | 8-E | 8-Bit IDCODE (MSBLSB) | | | | | |---------|---------|-----------------------|--|--|--|--| | | Version | Device Code | | | | | | MTSI | 0010 | 1001 | | | | | | MTSI-L | 0010 | 1010 | | | | | | MTSI-XL | 0010 | 1011 | | | | | Note: The version number of the IDCODE register remains unchanged. **Register Description** # 5 Register Description The register description gives information about all registers accessible via the microprocessor interface according to address, short name, access, reset value and value range. # **Register Description** # 5.1 Register Overview For 8-Bit Interface Table 12 Register Overview For 8-Bit Interface | Reg
Name | Access | 8-bit
Address | Reset
Value | Comment | Page
No. | |-------------|--------|------------------|-----------------|--|-------------| | SPA | RD/WR | 00 _H | 00 _H | Source Port Address Register
Value range see Table 13 | 42 | | ITSA | RD/WR | 01 _H | 00 _H | Input Time-Slot Address Register Value range see Table 14 | 42 | | DPA | RD/WR | 02 _H | 00 _H | Destination Port Address Register
Value range see Table 13 | 42 | | OTSA | RD/WR | 03 _H | 00 _H | Output Time-Slot Address Register
Value range see Table 14 | 43 | | SCA | RD/WR | 07 _H | 00 _H | Subchannel Address Register Value range see Table 15 | 43 | | GI1 | RD/WR | 04 _H | 00 _H | General Input Register 1 | 44 | | GI2 | RD/WR | 05 _H | 00 _H | General Input Register 2 | 46 | | CCMD | RD/WR | 06 _H | 00 _H | Connection Command Register | 47 | | CMD1 | RD/WR | 08 _H | 00 _H | Configuration Command Register 1 | 49 | | CMD2 | RD/WR | 0A _H | 00 _H | Configuration Command Register 2 | 52 | | MV | RD/WR | 0C _H | 00 _H | Message Value Register | 56 | | ISTA1 | RD | 0E _H | 00 _H | Interrupt Status Register 1 | 57 | | IESTA1 | RD | 10 _H | 00 _H | Interrupt Error Status Register 1 | 58 | | IESTA2 | RD | 11 _H | 00 _H | Interrupt Error Status Register 2 | 58 | | INTM1 | RD/WR | 12 _H | 3D _H | Interrupt Mask Register 1 | 59 | | INTEM1 | RD/WR | 14 _H | 3F _H | Interrupt Error Mask Register 1 | 60 | | INTEM2 | RD/WR | 15 _H | FF _H | Interrupt Error Mask Register 2 | 60 | | GPPI | RD | 16 _H | 00 _H | General Purpose Port Input Register | 61 | | GPPO | WR | 18 _H | 00 _H | General Purpose Port Output Register | 61 | | GPD | RD/WR | 1A _H | 00 _H | General Purpose Direction Register | 61 | | GPM | RD/WR | 1B _H | FF _H | General Purpose Mask Register | 62 | | GPI | RD | 1C _H | IDCODE | General Purpose Interrupt Register | 62 | | TSV | RD | 1E _H | XX _H | Time-Slot Value Register | 63 | | CON | RD | 1F _H | XX _H | Configuration Register | 66 | **Register Description** # Table 13 Value Range for SPA/DPA | Addressed Lines | Value Range Bit30 | |-----------------------|-------------------| | Local bus input lines | 150 | # Table 14 Value Range for ITSA/OTSA | Data Rate | Number of available time-slots (Bit70) | |---------------|--| | 2.048 Mbit/s | 310 | | 4.096 Mbit/s | 630 | | 8.192 Mbit/s | 1270 | | 16.384 Mbit/s | 2550 | # Table 15 Value Range for SCA | Mode | Range | |-----------------|------------------------------| | 1-bit switching | 07 for ISCA02; 07 for OSCA02 | | 2-bit switching | 03 for ISCA01; 03 for OSCA01 | | 4-bit switching | 01 for ISCA0; 01 for OSCA0 | # **Register Description** # 5.2 Detailed Register Description For 8-bit Interface Source Port Address Register RD/WR Address: 00H Reset value: 00H 5 2 7 6 4 3 1 0 0 SPA 0 0 0 PA3 PA2 PA1 PA0 BIT7..4 Must be set to 0 PA3..0 Port Address Input Time-Slot Address Register RD/WR Address: 01H Reset value: 00H 7 6 5 4 3 2 1 0 ITSA TSA7 TSA6 TSA5 TSA4 TSA3 TSA2 TSA1 TSA0 TSA7..0 Time-Slot Address **Destination Port Address Register** RD/WR Address: 02H Reset value: 00H 7 6 5 3 2 1 0 4 0 0 DPA 0 0 PA3 PA2 PA1 PA0 BIT7..4 Must be set to 0 PA3..0 Port Address Output Time-Slot Address Register RD/WR Address: 03H Reset value: 00H 7 6 5 4 3 2 1 0 TSA7 TSA6 TSA5 **OTSA** TSA4 TSA3 TSA2 TSA1 TSA0 TSA7..0 Time-Slot Address Subchannel Address Register RD/WR Address: 07H Reset value: 00H 7 6 5 4 3 2 1 0 OSCA1 **SCA** 0 OSCA0 ISCA2 ISCA0 0 OSCA2 ISCA₁ OSCA2..0 Output Subchannel Address ISCA2..0 Input Subchannel Address General Input Register 1 RD/WR Address: 04H Reset value: 00H 7 6 5 4 3 2 1 0 GI1 GV7 GV5 GV4 GV2 GV1 GV6 GV3 GV0 ### GV7..0 General Value In case of a PLL Reference Selection Command (CMD1) the content of this register is interpreted as follows: ### **GV2..0** Clock Frequency 000 = 8 kHz 001 = 512 kHz 010 = 1.536 MHz 011 = 1.544 MHz 100 = 2.048 MHz 101 = 4.096 MHz 110 = 8.192 MHz 111 = 16.384 MHz In case of a Bit Shift Command (CMD1) the content of this register is interpreted as follows: **GV4** Bit shift value (only for input lines) 0 = bit shift applies before PFS rising edge 1 = bit shift applies after PFS rising edge **GV3..1** Bit shift value (range: 7 to 0) **GV0** Edge Control Bit (half clock shift) 0 = data transmit with rising edge and is sampled with falling edge 1 = data transmit with falling edge and is sampled with rising edge ### **Register Description** In case of the GPCLK as Frame Signal Command (CMD2) the content of this register is interpreted as follows: **GV7..2** Offset within the PFS frame in number of 16.384 MHz clock cycles (lower 6 bits; refer to GI2 for the upper part) **GV1** Edge Control Bit 0 = data changes with rising edge and is sampled with falling edge 1 = data changes with falling edge and is sampled with rising edge GV0 not used In case of the GPCLK as Clock Signal Command (CMD2) the content of this register is interpreted as follows: GV2..0 Output Frequency for the selected line 000 = 8 kHz 001 = 2.048 MHz 010 = 4.096 MHz 011 = 8.192 MHz 100 = 16.384 MHz 101 = Input Analog PLL (2.048 MHz) 110 = Internal Frequency (49.152 MHz) General Input Register 2 RD/WR Address: 05H Reset value: 00H 7 5 6 4 3 2 1 0 GI2 GV7 GV6 GV5 GV4 GV3 GV2 GV1 GV0 ### GV7..0 General Value In case of the GPCLK as Frame Signal Command (CMD2) the content of this register is interpreted as follows: - **GV7..5** Width of the pulse in number of 16.384 MHz clock cycles from 1 to 8 i.e. GV7..5 = 000 => 1 clock cycle, GV7..5 = 010 => 3 clock cycles - **GV4..0** Offset within the
PFS frame in number of 16.384 MHz clock cycles (upper 5 bits; refer to GI1 for the lower part) Connection Command Register RD/WR Address: 06H Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----|----|----|----|-----|-----|-----|-----| | CCMD | 13 | 12 | l1 | 10 | CC3 | CC2 | CC1 | CC0 | ### CC3..0 Command Code 0000 = no operation at all 0001 = Constant Delay Connection Command (incl. Broadcast Connection) (SPA, ITSA, DPA, OTSA, SCA are considered) I1..0 Subchannel Mode 00 = 8-bit wide time-slots 01 = 4-bit wide time-slots 10 = 2-bit wide time-slots 11 = 1-bit wide time-slots 0010 = Minimum Delay Connection Command (incl. Broadcast Connection) (SPA, ITSA, DPA, OTSA are considered) 0011 = Send Message Command (always Constant Delay) (DPA, OTSA, MV are considered) 0100 = Stop Message Command (DPA, OTSA are considered) 0101 = Disconnect Command (SPA, ITSA, DPA, OTSA, SCA are considered) **11..0** see I1..0 of Constant Delay Connection Command (incl. Broadcast Connection) 0110 = Disconnect Part of Broadcast Command (SPA, ITSA, DPA, OTSA, SCA are considered) 11..0 see I1..0 of Constant Delay Connection Command (incl. Broadcast Connection) 0111 = Multipoint Connect Command (SPA, ITSA, DPA, OTSA are considered) IO Multipoint MODE 0 = logical OR connection 1 = logical AND connection # **Register Description** 1000 = Disconnect All Command 1001 = Bidirectional Connect Command (SPA, ITSA, DPA, OTSA are considered) **IO** Delay MODE 0 = Minimum Delay 1 = Constant Delay 1010 = Memory Dump (Connection and Data Memory) **I0** Memory Dump 0 = disable 1 = enable ### **Register Description** Configuration Command Register 1 RD/WR Address: 08H Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----|----|----|----|-----|-----|-----|-----| | CMD1 | 13 | 12 | l1 | 10 | CC3 | CC2 | CC1 | CC0 | ### CC3..0 Command Code 0000 = no operation 0001 = not used 0010 = PLL Reference Selection Command (GI1 is considered to set the frequency) **I3..0** Synchronization Information 0000 = no synchronization = internal oscillator (default) 0001 = synchronizes the PLL to PFS 0010 = synchronizes the PLL to PDC 0011 = not used 0100 = not used 0101 = synchronizes the PLL to NTWK_1 0110 = synchronizes the PLL to NTWK_2 0011 = Start Special Configuration Command **I3..0** Only one code is allowed 1111 = start special configuration register programming 0100 = Write Special Configuration Command **I3..0** Only one code is allowed 1111 = write special configuration register (GI1 is considered) 0101 = not used 0110 = PCM Clock Input/Output Selection Command (Default: PFS and PDC inactive) **I2..0** Frequency Information 000 = not used 001 = enable PFS and PDC = 2.048 MHz 010 = enable PFS and PDC = 4.096 MHz 011 = enable PFS and PDC = 8.192 MHz ### **Register Description** 100 = enable PFS and PDC = 16.384 MHz **I3** Direction Information 0 = PFS and PDC as Input 1 = PFS and PDC as Output 0111 = not used 1000 = not used 1001 = not used 1010 = Phase Alignment **12..0** must be set to 000 I3 PLL Phase Alignment (Please see description, Chapter 3.4.3) 0 = disable (default after reset) 1 = enable # The PLL phase alignment must be disabled for reference frequencies < 2.048 MHz 1011 = Set Bit Rate Command Local Bus (PCM) (Default for all lines = 2.048 Mbit/s) **I1..0** Base Bit Rate Information 00 = 2.048 Mbit/s 01 = 4.096 Mbit/s 10 = 8.192 Mbit/s 11 = 16.384 Mbit/s **I2** Destination Information 0 = no effect 1 = set rate of input lines (SPA is considered) **I3** Destination Information 0 = no effect 1 = set rate of output lines (DPA is considered) 1100 = not used 1101 = Read Time-Slot Command **IO** Destination Information 0 = read input time-slots (SPA, ITSA are considered) 1 = read output time-slots (DPA, OTSA are considered) 1110 = not used # **Register Description** 1111 = Bit Shift Command (GI1 is considered to set shift value) (Default: Bit Shift is inactive) # **I1..0** Direction Control 00 = Set shift value for input line (SPA is considered) 01 = Set shift value for all input lines 10 = Set shift value for all output lines 11 = Set shift value for all lines (input and output) ### **Register Description** Configuration Command Register 2 RD/WR Address: 0AH Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|----|----|----|----|-----|-----|-----|-----| | CMD2 | 13 | 12 | l1 | 10 | CC3 | CC2 | CC1 | CC0 | ### CC3..0 Command Code 0000 = no operation at all 0001 = External Frequency # (Must be programmed first) IO Set External Frequency 0 = 32.768 MHz 1 = 16.384 MHz I1 Fallback to Oscillator 0 = disable (and turn off "enable" status temporarily if fallback has occurred) 1 = enable If "Fallback to Oscillator" is enabled and a fallback has occurred, the corresponding failure is indicated in the IESTA1 and/or IESTA2 registers. For all clock failures, the PLL bit ("PLL Source Failure Indication", IESTA2 register) as well as the clock source related bit (in IESTA1 or IESTA2 register) will be set to "1". With the clock valid again the previously changed bits in IESTA1 and/or IESTA2 are set back to "0", the fallback must be disabled (CMD2=01_H/11_H) for a few cycles and enabled again thereafter. # I2 APLL's parameters 0 = default 1 = start APLL with improved parameters The command CMD2= 41_H or CMD2= 51_H to start the APLL with improved parameters must only be issued only once after Power Up ### **Register Description** 0010 = Parallel Mode Set the first 8 local bus input lines as 8 parallel input lines and set the first 8 local bus output lines as 8 parallel output lines. IO Set Parallel Mode 0 = disable 1 = enable 0011 = IREQ Pin Command I1..0 Set IREQ Pin (Default: IREQ is inactive) 00 = IREQ is active low 01 = IREQ is active high 10 = IREQ as open-drain pin **I2** Set Interrupt Time-Out Counter Set the inactive time between two consecutive interrupts 0 = disable = 20 ns 1 = enable = 300 ns 0100 = PCM Standby Command Set Local Bus (PCM) to High Impedance 0 = outputs are tristated (default) 1 = outputs are enabled **I1** not used must be set to '0' not used must be set to '0' Internal PCM Clock Synchronization 0 = Must be set in PCM clock master mode 1 = Must be set in PCM clock slave mode 0101 = Loop Command IO Set PCM-PCM Loop 0 = disable (default) 1 = enable 0110 = GPCLK as Frame Signal Command (GI1, GI2 are considered) (Default: All GPCLK's are tristated) **I2..0** GPCLK Line (7..0) # **Register Description** I3 Invert Mode 0 = frame signal is high active 1 = frame signal is low active 0111 = GPCLK as Clock Signal Command (GI1 is considered to set the frequency) (Default: All GPCLK's are tristated) **I2..0** GPCLK Line (7..0) 1000 = Set Range of Data Rate Command To avoid loss of data this command should be issued only once after reset. If the range of data rate is changed later on, loss of data must be expected for up to four frames. **I3..0** Range Select To specify the range the min and max codes have to be logical OR combined. 0001 = 2.048 Mbit/s (default) 0010 = 4.096 Mbit/s 0100 = 8.192 Mbit/s 1000 = 16.384 Mbit/s 1001 = Read Configuration **I3..0** Select Configuration Command 0000 = not used 0001 = PLL Source 0010 = not used 0011 = not used 0100 = not use 0101 = Local Bus (PCM) Clock Output Selection 0110 = not used 0111 = not used 1000 = not used 1001 = Phase Alignment 1010 = External Input Frequency 1011 = Parallel Mode 1100 = IREQ Pin 1101 = Local Bus Standby # **Register Description** 1110 = Loop 1111 = Range of Data Rate 1010 = Read GPCLK Configuration **I2..0** GPCLK Line 7..0 1011 = Read Local Bus (PCM) Line Configuration **IO** Destination Information 0 = Read Data Rate of Input Line (SPA is considered) 1 = Read Data Rate of Output Line (DPA is considered) 1100 = not used 1101 = Read Bit Shift Configuration **IO** Destination Information 0 = Shift Value for Input Line (SPA is considered) 1 = Shift Value for all Output Lines 1110 = not used 1111 = Software Reset **I0** Set Software Reset 0 = Deactivate Software Reset (default) 1 = Activate Software Reset Message Value Register RD/WR Address: 0CH Reset value: 00H 7 5 2 0 6 4 3 1 MV5 MV4 MV3 MV2 MV1 MV0 MVMV7 MV6 MV7..0 Message Value Interrupt Status Register 1 RD Address: 0EH Reset value: 00H 7 6 5 4 3 2 1 0 ISTA1 **APLL** TSA **NFC** 0 ER2 ER1 **GPIO RDY** **APLL** APLL lock indication 0 = PLL is not locked = bypassed 1 = PLL is locked **ER2** Error2 Interrupt Change Indication (not active in 16-bit mode) 0 = no change detected in the Interrupt Error Status Register 2 (IESTA2) 1 = change detected in the Interrupt Error Status Register 2 (IESTA2) **ER1** Error1 Interrupt Change Indication 0 = no change detected in the Interrupt Error Status Register 1 (IESTA1) 1 = change detected in the Interrupt Error Status Register 1 (IESTA1) **GPIO** General Purpose Change Indication 0 = no change according to GP port inputs detected 1 = at least one change according to GP port inputs detected **TSA** Time-Slot Arrived Indication 0 = there is no new time-slot value in the register TSV 1 = there is a new time-slot value in the register TSV **NFC** No Further Connections Indication 0 = establishing of connections is possible 1 = the maximum amount of connections is reached **RDY** Ready Indication 0 = CCMD is not ready to be written to 1 = CCMD is ready to be written to # **Register Description** Interrupt Error Status Register 1 RD Address: 10H Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|---|---|---|---|---|---|-----|-----| | IESTA1 | 0 | 0 | 0 | 0 | 0 | 0 | NW2 | NW1 | NW2 NTWK_2 Failure Indication NW1 NTWK_1 Failure Indication for all these status bits the values can be 0 = no failure detected 1 = failure detected **Interrupt Error Status Register 2** RD Address: 11H Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |--------|-----|-----|---|---|---|---|---|---| | IESTA2 | CON | PLL | 0 | 0 | 0 | 0 | 0 | 0 | **CON** Connection Memory Error/Overflow Indication PLL PLL Source Failure Indication for all these status bits the values can be 0 = no
failure detected 1 = failure detected Interrupt Mask Register 1 RD/WR Address: 12H Reset value: 3DH 7 6 5 4 3 2 1 0 INTM1 0 0 **GPIO TSA** 0 **RDY** ER2 ER1 **ER2** Error2 Interrupt Change Indication Mask (not active in 16-bit mode) 0 = Do not mask the Change Indication Bit 1 = Mask the Change Indication Bit **ER1** Error1 Interrupt Change Indication Mask 0 = Do not mask the Change Indication Bit 1 = Mask the Change Indication Bit **GPIO** General Purpose Change Indication Mask 0 = Do not mask the Change Indication Bit 1 = Mask the Change Indication Bit **TSA** Time-Slot Arrived Indication Mask 0 = Do not mask the Time-Slot Arrived Indication Bit 1 = Mask the Time-Slot Arrived Indication Bit **RDY** Ready Indication Mask 0 = Do not mask the Ready Indication Bit 1 = Mask the Ready Indication Bit Mask = Disable the interrupt Interrupt Error Mask Register 1 RD/WR Address: 14H Reset value: 3FH 7 6 5 4 3 2 1 0 INTEM1 0 0 0 0 NW2 NW1 0 0 NW2 NTWK_2 Failure Indication Mask NW1 NTWK_1 Failure Indication Mask for all these indication bits the values can be 0 = Do not mask this interrupt 1 = Mask this interrupt Mask = Disable the interrupt Interrupt Error Mask Register 2 RD/WR Address: 15H Reset value: FFH 7 6 5 4 3 2 0 1 **PLL** 0 INTEM2 CON 0 0 0 0 0 **CON** Connection Memory Overflow Indication Mask **PLL** PLL Source Failure Indication Mask for all these indication bits the values can be 0 = Do not mask this interrupt 1 = Mask this interrupt Mask = Disable the interrupt # **Register Description** General Purpose Port Input Register RD Address: 16H Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------| | GPPI | GPB7 | GPB6 | GPB5 | GPB4 | GPB3 | GPB2 | GPB1 | GPB0 | GPB7..0 General Purpose Bits # **General Purpose Port Output Register WR** Address: 18H Reset value: 00H | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |------|------|------|------|------|------|------|------|------| | GPPO | GPB7 | GPB6 | GPB5 | GPB4 | GPB3 | GPB2 | GPB1 | GPB0 | ### GPB7..0 General Purpose Bits General Purpose Direction Register RD/WR Address: 1AH Reset value: 00H | | = | _ | _ | = | - | _ | 1 | - | |-----|-----|-----|-----|-----|-----|-----|-----|-----| | GPD | DC7 | DC6 | DC5 | DC4 | DC3 | DC2 | DC1 | DC0 | # DC7..0 Direction Control 0 = set line as input 1 = set line as output General Purpose Mask Register RD/WR Address: 1BH Reset value: FFH 7 5 6 4 3 2 1 0 **GPM** IM7 IM6 IM2 IM1 IM0 IM5 IM4 IM3 IM7..0 GPIO Interrupt Mask (bit 0 for line 0, bit 1 for line 1 ..) 0 = enable change detection 1 = disable change detection General Purpose Interrupt Register RD Address: 1CH Reset value: IDCODE (hardware reset) 00_H (software reset) 5 7 6 4 3 2 1 0 **GPI** IND7 IND6 IND5 IND4 IND3 IND2 IND1 IND0 IND7..0 GPIO Interrupt Indication (bit 0 for line 0, bit 1 for line 1 ..) 0 = no change detected 1 = at least one change detected on this line Time-Slot Value Register RD Address: 1EH Reset value: XXH For the Read Time-Slot Value Command the content of the TSV register is interpreted as: TSV7..0 Time-Slot Value For the Read Configuration Command the content of the TSV register is interpreted as: PLL Reference Configuration TSV3..0 See I3..0 from PLL Reference Selection Command (page 49) **TSV6..4** 000 = 8 kHz 001 = 512 kHz 010 = 1.536 MHz 011 = 1.544 MHz 100 = 2.048 MHz 101 = 4.096 MHz 110 = 8.192 MHz 111 = 16.384 MHz **PCM Clock Output Selection** **TSV3..0** See I3..0 from PCM Clock Output Selection Command (page 49) 00 = 8 kHz 01 = 512 kHz 10 = 2.048 MHz Phase Alignment **TSV3** See I3 Phase Alignment Command (page 50) External Frequency **TSV0** See I0 from Set External Frequency Command (page 52) ### **Register Description** Parallel Mode **TSV0** See I0 from Set Parallel Mode Command (page 53) **IREQ Pin** TSV2..0 See I1..0 from Set IREQ Pin Command (page 53) Local Bus (PCM) Standby **TSV1..0** See I0 from Set Local Bus (PCM) Standby Command (page 53) Loop **TSV1..0** See I1..0 from Loop Command (page 53) Range of Data Rate TSV3..0 See I3..0 from Set Range of Data Rate Command (page 54) For the Read GPCLK Configuration Command the content of the TSV register is interpreted as: **TSV0** 0 = GPCLK Line as Clock Signal 1 = GPCLK Line as Frame Signal GPCLK Line as Clock Signal TSV3..1 000 = 8 kHz 001 = 2.048 MHz 010 = 4.096 MHz 011 = 8.192 MHz 100 = 16.384 MHz 101 = Input Analog PLL 110 = Internal Frequency GPCLK Line as Frame Signal **TSV1** 0 =Rising Edge 1 = Falling Edge **TSV7..2** Offset within the PFS frame in number of 16.384 MHz clock cycles (lower 6 bits; refer to CON for the upper part) ### **Register Description** For the Read Local Bus (PCM) Line Configuration Command the content of the TSV register is interpreted as: TSV1..0 00 = 2.048 MBit/s 01 = 4.096 MBit/s 10 = 8.192 MBit/s 11 = 16.384 MBit/s In case of the Read Bit Shift Configuration Command the content of the TSV register is interpreted as: TSV0 Edge Control 0 = Rising Edge 1 = Falling Edge TSV3..1 Bit Shift Value (Range: 7 to 0) **TSV4** Byte Shift Value (only for input lines) 0 = bit shift applies to byte before PFS rising edge 1 = bit shift applies to byte before PFS falling edge PRELIMINARY Register Description Configuration Register RD Address: 1FH Reset value: XXH 7 5 2 6 4 3 1 0 CON CON7 CON6 CON5 CON4 CON3 CON2 CON1 CON₀ For the Memory Dump Command (CCMD) the content of the CON register is: **CON7..0** Connection and Data Memory For the Read GPCLK Configuration Command the content of the CON register is: - **CON7..5** Width of the pulse in number of 16.384 MHz clock cycles from 1 to 8 i.e. CON7..5 = 000 => 1 clock cycle, CON7..5 = 010 => 3 clock cycles - **CON4..0** Offset within the PFS frame in number of 16.384 MHz clock cycles (upper 5 bits; refer to TSV for the lower part) # **Register Description** # 5.3 Register Overview For 16-Bit Interface Table 16 Register Overview For 16-Bit Interface | Reg
Name | Access | Address | Reset
Value | Comment | Page
No. | |-------------|--------|-----------------|-------------------|---|-------------| | SA | RD/WR | 00 _H | 0000 _H | Source Address Register | 68 | | DA | RD/WR | 02 _H | 0000 _H | Destination Address Register | 68 | | GI | RD/WR | 04 _H | 0000 _H | General Input Register | 69 | | CC16 | RD/WR | 06 _H | 0000 _H | Connection Command Register 16-bit | 69 | | CMD1 | RD/WR | 08H | 00H | Configuration Command Register 1 This is a 8-bit register | 49 | | CMD2 | RD/WR | 0AH | 00H | Configuration Command Register 2 This is a 8-bit register | 52 | | MV | RD/WR | 0CH | 00H | Message Value Register This is a 8-bit register | 56 | | ISTA1 | RD | 0EH | 00H | Interrupt Status Register 1 This is a 8-bit register | 57 | | IESTA | RD | 10 _H | 0000 _H | Interrupt Error Status Register | 70 | | INTM1 | RD/WR | 12H | 3DH | Interrupt Mask Register This is a 8-bit register | 59 | | INTEM | RD/WR | 14 _H | FF3F _H | Interrupt Error Mask Register | 70 | | IDC | RD | 1C _H | IDCODE | IDCODE Register This is a 8-bit register | 71 | | TSVC | RD | 1E _H | XXXX _H | Time-Slot Value / Configuration Register | 71 | ### **Register Description** # 5.4 Detailed Register Description For 16-Bit Interface Source Address Register RD/WR Address: 00H Reset value: 0000H SA | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | |------|------|------|------|------|------|------|------| | TSA7 | TSA6 | TSA5 | TSA4 | TSA3 | TSA2 | TSA1 | TSA0 | | | | | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 0 | 0 | 0 | 0 | PA3 | PA2 | PA1 | PA0 | High See Input Time-Slot Address Register on page 42 **Low** See Source Port Address Register on page 42 | Dest | ination Ad | ddress Re | gister | RD/W | V R | Address: 02 H | | | | | | | | | |------|----------------------------|-----------|--------|------|------------|----------------------|------|------|--|--|--|--|--|--| | Rese | Reset value: 0000 H | | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | | | | | | | | TSA7 | TSA6 | TSA5 | TSA4 | TSA3 | TSA2 | TSA1 | TSA0 | | | | | | | | DA | | | | | | | | | | | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | 0 | 0 | 0 | 0 | PA3 | PA2 | PA1 | PA0 | | | | | | | **High** See Output Time-Slot Address Register on page 43 Low See Destination Port Address Register on page 42 | PRELIMINARY | Register Description | |-------------|----------------------| | | | General Input Register RD/WR Address: 04H Reset value: 0000H GI | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | |---|------|------|------|------|------|------|-----|-----| | | GV15 | GV14 | GV13 | GV12 | GV11 | GV10 | GV9 | GV8 | | - | | | | | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | GV7 | GV6 | GV5 | GV4 | GV3 | GV2 | GV1 | GV0 | ### GV15..0 General Value GV15..8 See General Input Register 2 on page 46 GV7..0 See General Input Register 1 on page 44 Connection Command Register 16-bit RD/WR Address: 06H Reset value: 0000H | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | |------|----|----|-------|-------|-------|-------|-------|-------| | | 0 | 0 | OSCA2 | OSCA1 | OSCA0 | ISCA2 | ISCA1 | ISCA0 | | CC16 | | | | | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 13 | I2 | I1 | 10 | CC3 | CC2 | CC1 | CC0 | High See Subchannel Address Register on page 43 **Low** See Connection Command Register on page 47 | PRELII | PRELIMINARY Register Description | | | | | | | | | | | | |--------------------|----------------------------------|-----------|--------|----|----|----|----------------------|-----|--|--|--|--| | Interru | pt Error S | tatus Reç | gister | RD | | | Address: 10 H | | | | | | | Reset value: 0000H | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | | | | | | CON | PLL | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | IESTA | | | | | | | | | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | NW2 | NW1 | | | | | High See Interrupt Error Status Register 2 on page 58Low See Interrupt Error Status Register 1 on page 58 | Interrup | t Error Ma | ask
Regis | ster | RD/WF | ? | Address: 14 H | | | | | | | | |----------|----------------------------|-----------|------|-------|----|----------------------|-----|-----|--|--|--|--|--| | Reset va | Reset value: FF3F H | | | | | | | | | | | | | | | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | | | | | | | CON | PLL | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | INTEM | | | | | | | | | | | | | | | | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | NW2 | NW1 | | | | | | High See Interrupt Error Mask Register 2 on page 60 Low See Interrupt Error Mask Register 1 on page 60 | PRELIMINARY | Register Description | |-------------|----------------------| | | | IDCODE Register RD Address: 1CH Reset value: IDCODE 7 5 4 3 2 1 0 6 **IDC** IDC7 IDC6 IDC5 IDC4 IDC3 IDC2 IDC1 IDC0 # IDC7..0 IDCODE refer to Table 11 "IDCODE via μP Read Access" on Page 38 Time-Slot Value / Configuration Register RD Address: 1EH Reset value: XXXXH 15 14 13 12 11 10 9 8 TSVC15 TSVC14 TSVC13 TSVC12 TSVC11 TSVC10 TSVC9 TSVC8 **TSVC** 7 6 5 4 3 2 1 0 TSVC7 TSVC6 TSVC5 TSVC4 TSVC3 TSVC2 TSVC1 TSVC0 TSVC15..8 Configuration and Connection Data Memory (refer to page 66) **TSVC7..0** Time-Slot Value (refer to page 63) ### **Programming the Device** # 6 Programming the Device The register set consists of parameter registers (SPA, ITSA, SCA, DPA, OTSA, GI1..), command registers (CCMD, CMD1, CMD2) and status registers (ISTA1, IESTA1, IESTA1, Please note that some bits contained in the register ISTA1 (Interrupt Status Register 1) do not generate any interrupt, for more details see the paragraph Chapter 6.2. Before issuing a command the parameter registers have to be written accordingly. A connection command can only be issued if the connection command register is ready to be written to (see **Figure 15**). The connection command register status is shown with the RDY bit in the **ISTA1** register. A detailed description for the read and write access to the command registers can be found in **Chapter 6.1**. Figure 15 Order of Register Access ### **Programming the Device** ### 6.1 Read and Write Access For the read and write access it is necessary to distinguish between a connection and configuration command. The connection command register is used to establish a connection (described in **Chapter 6.10**) and the configuration registers are used to configure the device, e.g. set the clock frequency. If the ISTA1:RDY bit is set the connection command register is ready to receive data from the μP interface. If the parameter register and the connection command register are written the RDY bit will be reset from the internal controller. If the connection is established the internal controller will set the RDY bit and the connection command register is ready for the next write or read access. The ISTA1:RDY can be enabled to generate an interrupt to indicate that the device is ready to receive the data, otherwise the μP must poll the ISTA1:RDY bit. The configuration command register works independent from the RDY bit. Note: There must be a recovery time period of 120 ns after every configuration command write access to the next write access (command or parameter register). ### **Programming the Device** ### 6.2 Interrupt Handling The SWITI interrupt concept consists of four interrupt status register with their corresponding mask register. The five interrupt status register can be divided in one main register, and a sub group including two error interrupt register, one general purpose interrupt register and one time-slot value register. Every sub register has a bit in the main register to indicate the set of an interrupt in the assigned error or general purpose register or to indicate a new value in the time-slot value register. The interrupt status register can be read via the microprocessor interface. The NFC and RDY will be set and reset from the internal controller. When an interrupt occurs one or more of the bit GPIO, TSA, ER2, or ER1 is set, then the assigned secondary interrupt status register or time-slot value register must be read first in order to check for the cause of the interrupt. After a secondary status register read access, the error status register and the corresponding bit in the Interrupt Status Register 1 (ISTA1) will be reset. Figure 16 8-bit µP Access Interrupt Structure The IREQ output is level active. It stays active until all interrupt sources have been serviced. If a new status bit is set while an interrupt is being serviced (µP read access), the IREQ pin stays active. For the duration of a write access to the INTM1 register the IREQ line is deactivated. When using an edge-triggered interrupt controller, it is recommended to rewrite the INTM1 register at the end of any interrupt service routine. ### APLL, STR, RDY and NFC Bits If the internal controller does set the RDY bit for the first time and the bit is not masked an interrupt will be generated. If the μP reads the ISTA1 register the interrupt will be deactivated. The RDY bit is still active and can be reset from the internal controller. The NFC, STR and APLL bits are not set by any interrupt and therefore can not be masked. Setting these bit does not generate any interrupt. The NFC bit is set from the internal controller if no further connections can be established. The STR bit is set from the internal stream to stream controller if a stream to stream connection is configured. The APLL bit is set from the internal analog PLL controller if the PLL is locked. ### **Programming the Device** ### **Masking Interrupts** If an interrupt is not masked (enabled) the IREQ pin will be active if one of the status bits in the interrupt status register is set. The mask bit prevents that the IREQ pin will be active if the status bit is set. The mask bits for the error status registers or general purpose interrupt register disable the interrupt indication for the interrupt status register. Only the interrupt status register can set the IREQ pin if the bit is not masked. ### **Interrupt Structure for a 16-bit Microprocessor Access** Figure 17 16-bit µP Access Interrupt Structure In opposite to the 8-bit μP access there is only one bit (ER1) to indicate a change in the 16-bit Interrupt Error Status Register 1. # **Programming the Device** # 6.3 Command and Register Overview The following table (Table 17) shows which parameter registers are considered by issuing an appropriate connection command. Table 17 Affected Registers for Connection Commands | Command | Registers | | | | | | | | | |--|-----------|------|-----|-----|------|----|-----|-----|-----| | | SPA | ITSA | SCA | DPA | OTSA | MV | GI1 | GI2 | CON | | Connect/Disconnect (without subchannels) | Х | х | | Х | х | | | | | | Connect (with subchannels) | Х | х | х | х | х | | | | | | Disconnect
(with subchannels) | Х | х | | х | х | | | | | | Send Message | | | | Х | Х | Х | | | | | Stop Message | | | | Х | Х | | | | | | Disconnect Part of Broadcast (without subchannels) | х | х | | х | х | | | | | | Disconnect Part of Broadcast (with subchannels) | х | х | х | х | х | | | | | | Multipoint Connect/ Disconnect | Х | х | | Х | х | | | | | | Bidirectional Connection | Х | Х | | Х | Х | | | | | | Disconnect All | | | | | | | | | | | Memory Dump (Connection and Data Memory) | | | | | | | | | х | ## **Programming the Device** The following table (Table 18) shows which parameter registers are considered by issuing an appropriate configuration command. Table 18 Affected Registers for Configuration Commands | Command | | Registers | | | | | | | | | |---------------------------------|------|-----------|-----|------|-----|-----|------|-----|-----|-----| | | CMD1 | CMD2 | SPA | ITSA | SCA | DPA | OTSA | GI1 | GI2 | TSV | | PLL Reference | Х | | | | | | | х | | | | PCM Clock Output | Х | | | | | | | | | | | Phase Alignment | Х | | | | | | | | | | | Set Bit Rate Local
Bus | х | | Х | | | х | | | | | | Read Time-Slot | Х | | Х | Х | | Х | Х | | | | | Clock Shift | Х | | Х | | | | | х | | | | External Input
Frequency | | Х | | | | | | | | | | Set Parallel Mode | | х | | | | | | | | | | Set IREQ Pin | | х | | | | | | | | | | Standby Local
Bus | | Х | | | | | | | | | | Set Loop | | х | | | | | | | | | | Frame Signal | | x | | | | | | х | х | | | GPCLK Clock | | х | | | | | | х | | | | Set Range of Data
Rate | | Х | | | | | | | | | | Read
Configuration | | Х | | | | | | | | Х | | Read GPCLK
Configuration | | Х | | | | | | | | Х | | Read Local Bus
Configuration | | Х | | | | | | | | Х | | Read Bit Shift
Configuration | | Х | | | | | | | | Х | | Software Reset | | Х | | | | | | | | | ## **Programming the Device** The command registers have the following structure: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |----|----|----|----|-----|-----|-----|-----| | 13 | 12 | I1 | 10 | CC3 | CC2 | CC1 | CC0 | CC3..0 is the command code and I3..0 is the parameter code. The following tables (Table 19 to Table 20) show all valid values of command and parameter codes and the related function. **Table 19** Connection Command and Parameter Codes | Command ¹⁾ | Command
Code
(low nibble) | Parameter
Code
(high nibble) | Note | |--------------------------------------|----------------------------------|--|--| | Constant Delay Connect
Disconnect | 1 _H
5 _H | 0 _H
1 _H
2 _H
3 _H | address 8-bit connections
address 4-bit connections
address 2-bit connections
address 1-bit connections | | Minimum Delay Connect | 2 _H | x _H | | | Send Message | 3 _H | x _H | | | Stop Message | 4 _H | x _H | | | Disconnect Part of Broadcast | 6 _H | 0 _H
1 _H
2 _H
3 _H | address 8-bit connections
address 4-bit connections
address 2-bit connections
address 1-bit connections | |
Multipoint Connect | 7 _H | 0 _H
1 _H | OR connection of time-slots AND connection of time-slots | | Disconnect All | 8 _H | x _H | | | Bidirectional Connect | 9 _H | 0 _H
1 _H | minimum delay
constant delay | | Memory Dump | A _H | 0 _H
1 _H | disable enable | ¹⁾ The input port is determined in SPA Bit3..0 and the output port in DPA Bit3..0. The input time-slot is determined in ITSA and the output time-slot in OTSA. # **Programming the Device** Table 20 Configuration Command 1 and Parameter Codes | Command | Command
Code
(low nibble) | Parameter
Code
(high nibble) | Note | |---|---------------------------------|--|--| | Set Bit Rate
Local Bus ¹⁾ | B _H | 0-3 _H
4-7 _H | no effect
set bit rate of local input port (2/4/8/
16 Mbit/s) | | | | 8-B _H | set bit rate of local output port (2/4/8/16 Mbit/s) | | | | C-F _H | set for both input and output (2/4/8/16 Mbit/s) | | Read Time-Slot ²⁾ | D _H | 0 _H
1 _H | read time-slot of input port read time-slot of output port | | Bit Shift ³⁾ | F _H | 0 _H
1 _H
2 _H
3 _H | set bit shift of input line set bit shift of all input lines set bit shift of all output lines set bit shift of all input and output lines | ¹⁾ the input and output port is determined in SPA, DPA Table 21 Configuration Command 2 and Parameter Code | Command | Command
Code
(low nibble) | Parameter
Code
(high nibble) | Note | |--------------------|---------------------------------|--|--| | External Frequency | 1 _H | 0 _H
1 _H | set frequency to 32.768 MHz
set frequency to 16.384 MHz | | Parallel Mode | 2 _H | 0 _H
1 _H | disable enable = first 8 local input bus lines are parallel and first 8 local output lines are parallel | | Set IREQ Pin | 3 _H | 0 _H
1 _H
2 _H
4 _H
5 _H
6 _H | IREQ is active low, timer = 20 ns IREQ is active high, timer = 20 ns IREQ as open-drain, timer = 20 ns IREQ is active low, timer = 300 ns IREQ is active high, timer = 300 ns IREQ as open-drain, timer = 300 ns | ²⁾ the time-slot is determined in SPA and ITSA or DPA and OTSA ³⁾ the input line is determined in SPA, the shift information in GI1 # **Programming the Device** **Table 21 Configuration Command 2 and Parameter Code** (cont'd) | Command | Command
Code
(low nibble) | Parameter
Code
(high nibble) | Note | |--|---------------------------------|---|---| | Standby Local Bus | 4 _H | 0 _H
1 _H | disable Local Bus (PCM)
enable Local Bus (PCM) | | Loop | 5 _H | 0 _H
1 _H | no loop at all enable Local Bus Loop | | Frame Signal ¹⁾ | 6 _H | 0XXX _b
1XXX _b | signal is high active
signal is low active
XXX is the line address | | GPCLK as Clock ²⁾ | 7 _H | 0 _H -7 _H | parameter code is line address | | Range of Data Rate | 8 _H | 0 _H -6 _H
8 _H -A _H | logical OR connection from min. and max. codes | | Read Configuration ³⁾ | 9 _H | 0 _H 1 _H 5 _H 9 _H A _H B _H C _H D _H E _H F _H | Master/Slave configuration PLL Reference Clock Output Selection Phase Alignment External Input Frequency Parallel Mode IREQ Pin Standby Local Bus Loop Range of Data Rate | | Read GPCLK
Configuration ⁴⁾ | A _H | 0 _H -7 _H | parameter code is line address | | Read Local Bus Line
Configuration ⁵⁾ | B _H | 0 _H
1 _H | Data Rate of Input Line ⁶⁾ Data Rate of Output Line ⁷⁾ | | Read Bit Shift
Configuration ⁸⁾ | D _H | 0 _H
1 _H | Shift Value for Input Line ⁹⁾
Shift Value for all Output Lines | ¹⁾ offset and width are determined in GI1 and GI2 ²⁾ frequency is determined in GI1 ³⁾ The result can be read from the **TSV** register ⁴⁾ The result can be read from the TSV and CON register ⁵⁾ The result can be read from the **TSV** register ⁶⁾ SPA must be used for line number ⁷⁾ **DPA** must be used for line number ⁸⁾ The result can be read from the TSV register ### **Programming the Device** ### 6.4 Indirect Configuration Register Access It is possible to read the current SWITI configuration with an indirect register access for analyze and test purpose. There are five commands in the CMD2 register which can be used to read the configuration. The clock generator output signal and external configuration for the SWITI can be read with the 'Read Configuration Command'. The four instruction bits select one possible configuration command. The current configuration is determined by the command written in the TSV register. The configuration information for every command can be found on page 40. The line configuration can be read with the command 'Read Local Bus Line configuration'. Before the command will be issued the **SPA** or **DPA** register must be written with the port number. The configuration for the selected line is written in the **TSV** register by the internal controller. The interrupt handling is described in **Chapter 6.2**. The bit shift configuration can be read with the command 'Read Bit Shift Configuration' and the dataflow is the same as described above. With the command 'Read GPCLK Configuration' it is possible to read the configuration for every GPCLK line. If this command is written the configuration can be read from the TSV and CON register. The CON register is not interrupt controlled and will keep the last data after a microprocessor read access. To read the correct configuration data from the **TSV** register it is not allowed to use the command "Read Time-Slot Value" before the **TSV** register was read. ### **Programming the Device** ### 6.5 Initialization Procedure After the reset process the PLL, local bus (PCM) interface, and some other signals need to be initialized. Since the SWITI offers the possibility to use two different external crystal/oscillator frequencies the command 'Set external frequency' must be used first to set the correct frequency and to set the correct value of the input frequency for the APLL. After approximately 750µs the APLL is locked and the APLL status bit is set and the next commands can be written. Figure 18 Initialization Procedure after Reset After this initialization procedure the different functional blocks of the SWITI can be programmed. - Local Bus (PCM) Interface - Interrupt's and IREQ Pin - GPCLK's and Frame Signals - General Purpose Interface ### **Programming the Device** ### 6.6 Clocking Unit The PCM clock signals for the line interface will be provided from external PCM devices if the SWITI is used as PCM clock slave or will be provided from the internal PLL if the SWITI is used as PCM clock master. This PCM clock configuration can be programmed with the special command 'PCM Input/Output Selection' in the **Figure CMD1** register. For the PLL synchronization please refer to Chapter 3.4.4 on page 27. ### Example: SWITI as PCM clock master, PLL reference is NTWK_1 with 8 KHz and PDC is driven with 8.192 MHz and PFS is driven. - Write 00_H to GI1 - Write 52_H to CMD1 - Write B6_H to CMD1 ### Example SWITI as PCM clock slave, PLL reference is PDC with 4.096 MHz. - Write 05_H to GI1 - Write 22_H to CMD1 - Write 26_H to CMD1 (PDC = 4.096 MHz and PFS as input) ### **Programming the Device** ### 6.7 Local Bus (PCM) Line Interface ### 6.7.1 Standby Command All PCM data lines are in a high impedance state after the reset process. If they are configured (data rate, bit shift) they can be enabled with the standby command. During the normal operation the PCM lines can be enabled or disabled with the standby command. If the lines are disabled the device works internally like an active device. ### Example: Set all output PCM lines to high impedance. Write 04_H to CMD1 ### 6.7.2 Determining Clock Rates The data rate range command is necessary to optimize the minimum delay feature. After the reset process the device assumes a bit rate of 2.048 Mbit/s for all PCM lines. The command must be issued if other data rates are used. Example (8-bit µP interface): - 1. Specify that only 2.048 Mbit/s and 4.096 Mbit/s are used for following Set Bit Rate Command. - Write 38_H to CMD2 - 2. Set bit rate of 4.096 Mbit/s on local bus input line 8 and local bus output line 1 - Write 08_H to SPA - Write 01_H to DPA - Write DB_H to CMD1 Example (16-bit µP interface): - 1. - Write 38_H to CMD2 - 2. - Write 0008_H to SA - Write 0001_H to DA - Write DB_H to CMD1 ### **Programming the Device** ### 6.7.3 Performing Bit Shifting The bit shift is performed on half-bit steps, not on a clock basis. It is a true bit shift, it means that with a data rate equals to the data clock frequency (e.g. 4.096 Mbit/s with 4.096 MHz data clock) programming a bit shift of 1-bit results on a shift of 1 clock period, and programming a shift of half-bit the result is a shift of half clock period. Running in double data clock rate (e.g. 4.096 Mbit/s with 8.192 MHz data clock), a bit shift of 1-bit results on a shift of 2 clock periods and a shift of half-bit will result on a shift of 1 clock period. ### 6.7.3.1 Input Bit Shifting Figure 19 Example: Input Bit Shifting Example (8-bit µP interface): Begin time-slot 0 of local input line 8 with the 4th rising edge relative to one byte before the PFS rising edge. The bits are
internally sampled with the falling edge. - Write 08_H to SPA - Write 08_H to GI1 - Write 0F_H to CMD1 Example (16-bit µP interface): - Write 0008_H to SA - Write 0008_H to GI - Write 0F_H to CMD1 ### **Programming the Device** ### 6.7.3.2 Output Bit Shifting Figure 20 Example: Output Bit Shifting Example (8-bit μ P interface): Output time-slot 0 of all output lines begins with the first falling edge relative to the first byte after PFS rising edge. The bits are internally sampled with the rising edge. - Write 01_H to GI1 - Write 2F_H to CMD1 Example (16-bit μ P interface): - Write 0001_H to GI - Write 2F_H to CMD1 ### **Programming the Device** ### 6.8 Global Clock Signals ### 6.8.1 Framing Groups Figure 21 Example Framing Groups Example (8-bit μ P interface): Frame signal on GPCLK_1 starts with the rising edge of 64th clock cycle and the length is set to 244 ns (4 x 61 ns). - Write 00_H to GI1 - Write 61_H to GI2 - Write 16_H to CMD2 Frame signal on GPCLK_2 starts with the falling edge of the 4th clock cycle and the length is set to 427 ns (7 x 61 ns). - Write 12_H to GI1 - Write C0_H to GI2 - Write 26_H to CMD2 ### Example (16-bit μ P interface): - Write 6100_H to GI2 - Write 0016_H to CMD2 - Write C012_H to GI2 - Write 0026_H to CMD2 ### **Programming the Device** ### 6.9 Read Time-Slot Value By issuing this command the time-slot value appears in the register **TSV** after arriving and an interrupt will be caused and a new read time-slot value will be accepted. The command has to be issued for every read request. The current TSV data will be overwritten if the read time-slot command is issued. Example (8-bit µP interface): Read time-slot 10 of local bus input line 3 - Write 03_H to SPA - Write 0A_H to ITSA - Write 0D_H to CMD1 Example (16-bit µP interface): - Write 0A03_H to SA - Write 0D_H to CMD1 ### Wrong Time-Slot and Time-Out In some case it could be happen that the μP tries to read a wrong time-slot. A wrong time-slot is defined as an invalid time-slot number for the selected data rate, e.g. data rate = 2 MBit/s and selected time-slot is 58. If the μP tries to read a wrong time-slot no interrupt would be generated and the controller doesn't accept any further commands. The SWITI has an integrated time-out counter to allow a new read time-slot command after the maximum of three frames. ### **Programming the Device** ### 6.10 Establish Connections The following chapter describes the programming of several kinds of connections. The programming interface allows to program or re-program a connection during the normal switching mode. Before a new connection for a specific output time-slot and line will be programmed the specific connection has to be released. ### 6.10.1 Establish 8-bit Connections Figure 22 Example: 8-bit Connection Example (8-bit µP interface): Connect time-slot 10 of local bus input line 3 with output time-slot 30 of local bus output line 13 as a constant delay connection - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 01_H to CCMD ### Example (16-bit μ P interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0001_H to CC16 ### **Programming the Device** ### 6.10.2 Subchannel Switching With the subchannel address register (SCA) and the constant delay command it is possible to program 1,2, and 4 connections. The following figure explains the relation between the subchannel address and the corresponding bits in one time-slot. Figure 23 Subchannel Address in Time-Slot ### 6.10.2.1 Establish 4-bit Connections Figure 24 Example: 4-bit Connection ### **Programming the Device** Example (8-bit µP interface): Connect low nibble of time-slot 10 of local bus input line 3 with high nibble of output timeslot 30 of local bus output line 13 as a constant delay connection - Write 08_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 11_H to CCMD Example (16-bit µP interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0811_H to CC16 ### 6.10.2.2 Establish 2-bit Connections Figure 25 Example: 2-bit Connection Example (8-bit μ P interface): Connect 2nd 2-bit subchannel of time-slot 10 of local bus input line 3 with 4th 2-bit subchannel of output time-slot 30 of local bus output line 13 as a constant delay connection - Write 19_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 21_H to CCMD ### **Programming the Device** Example (16-bit μ P interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 1921_H to CC16 ### 6.10.2.3 Establish 1-bit Connections Figure 26 Example: 1-bit Connection Example (8-bit µP interface): Connect 3rd 1-bit subchannel of time-slot 10 of local bus input line 3 with 6th 1-bit subchannel of output time-slot 30 of local bus output line 13 as a constant delay connection - Write 2A_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 31_H to CCMD ### Example (16-bit μ P interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 2A31_H to CC16 ### **Programming the Device** ### 6.10.3 Establish Broadcast Connections Figure 27 Example: Broadcast Connection Example (8-bit µP interface): Connect time-slot 10 of local bus line 3 with output time-slot 30 of local bus output line 13 and output time-slot 98 of local bus output line 15 in constant delay mode. If the connections are established consecutively it is not necessary to rewrite the source determining registers ITSA and SPA because they keep their values. - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 01_H to CCMD - Write 62_H to OTSA - Write 0F_H to DPA - Write 01_H to CCMD ### Example (16-bit µP interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0001_H to CC16 - Write 620F_H to DA - Write 0001_H to CC16 ### **Programming the Device** ### 6.10.4 Establish Subchannel Broadcast Connection Figure 28 Example: Subchannel Broadcast Connection - First Connection - Write 03_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 21_H to CCMD - Second Connection - Write 1A_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 21_H to CCMD - Third Connection - Write 23_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 31_H to CCMD - Fourth Connection - Write 2A_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA ### **Programming the Device** - Write 1E_H to OTSA - Write 00_H to DPA - Write 31_H to CCMD - Fifth Connection - Write 08_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 21_H to CCMD # 6.10.5 Establish Multipoint Connection Figure 29 Example: Multipoint Connection Example (8-bit µP interface): Connect time-slot 10 of local bus line 3 and time-slot 20 of local bus line 8 logical OR with output time-slot 30 of local bus output line 13 in constant delay mode. If the connections are established consecutively it is not necessary to rewrite the destination determining registers OTSA and DPA because they keep their values. - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 07_H to CCMD - Write 14_H to ITSA - Write 08_H to SPA - Write 07_H to CCMD ### **Programming the Device** Example (16-bit μ P interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0007_H to CC16 - Write 1408_H to SA - Write 0007_H to CC16 ### 6.11 Send Messages Sending messages means to transmit a constant value on any time-slot or subchannel after the message is programmed within three frames. A message is sent continuously until the sending is stopped by the stop message command. Figure 30 Example: Send Message Example (8-bit µP interface): Send constant value of FF_H on time-slot 10 of local bus line 3 - Write FF_H to MV - Write 0A_H to OTSA - Write 03_H to DPA - Write 03_H to CCMD ### Example (16-bit µP interface): - Write FF_H to MV - Write 0A03_H to DA - Write 0003_H to CC16 ### **Programming the Device** ### 6.12 Release Connections ### 6.12.1 Release 8-bit Connections Example (8-bit µP interface): Release connection established in Figure 22 - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 05_H to CCMD ### Example (16-bit µP interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0005_H to CC16 ### 6.12.2 Release 4-bit Connections Example (8-bit µP interface): Release connection established in Figure 24 - Write 08_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 15_H to CCMD ### Example (16-bit µP interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0815_H to CC16 ### 6.12.3 Release 2-bit Connections Example (8-bit µP interface): Release connection established in Figure 25 - Write 19_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA ### **Programming the Device** - Write 1E_H to OTSA - Write 0D_H to DPA - Write 25_H to CCMD ### Example (16-bit µP interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 1925_H to CC16 ### 6.12.4 Release 1-bit Connections Example (8-bit µP interface): Release connection established in Figure 26 - Write 2A_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 35_H to CCMD ### Example (16-bit μ P interface): - Write 0A03_H to SA - Write 1E0D_H to DA - Write 2A35_H to CC16 ### **Programming the Device** ### 6.12.5 Release Broadcast Connection Example (8-bit µP interface): Release connection established in **Figure 27**. All but the last connection participating on a broadcast connection have to be released by the Disconnect Part of the Broadcast Command. The last connection has to be released by the **Constant Delay Connect Disconnect** Command. - Write 0A_H to ITSA - Write 03_H to SPA - Write 62_H to OTSA - Write 0F_H to DPA - Write 06_H to CCMD -
Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 0D_H to DPA - Write 05_H to CCMD ### Example (16-bit µP interface): - Write 0A03_H to SA - Write 620F_H to DA - Write 0006_H to CC16 - Write 0A03_H to SA - Write 1E0D_H to DA - Write 0005_H to CC16 #### 6.12.6 Release Subchannel Broadcast Connection The order can be different as the establish order. The last release must be a normal release command. - First Connection - Write 03_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 26_H to CCMD - Second Connection - Write 1A_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA ## **Programming the Device** - Write 00_H to DPA - Write 26_H to CCMD - Third Connection - Write 23_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 36_H to CCMD - Fourth Connection - Write 2A_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 36_H to CCMD - Fifth Connection - Write 08_H to SCA - Write 0A_H to ITSA - Write 03_H to SPA - Write 1E_H to OTSA - Write 00_H to DPA - Write 25_H to CCMD # 6.12.7 Release Multipoint Connection This type of connections is released with normal disconnect commands. (See "Release 8-bit Connections" on page 97.) # 6.13 Stop Sending Messages Example (8-bit µP interface): Stop sending message invoked in Figure 30 - Write 0A_H to OTSA - Write 03_H to DPA - Write 04_H to CCMD #### Example (16-bit µP interface): - Write 0A03_H to DA - Write 0004_H to CC16 **Timing Diagrams** # 7 Timing Diagrams ## 7.1 PCM Interface Timing The following tables and figures give the PCM timing with a capacitive load of 50 pF. PDC and PFS are configured as inputs. The timing is also valid if PDC and PFS are configured as outputs. The PFS output high time is fixed to 488 ns for all data rates and clock rates. The PFS input minimum high time depends on the PDC input frequency (see Table 22). Figure 31 PCM Timing Table 22 PCM Timing | Parameter | Symbol | Limit Values | | Unit | Test Condition | |--------------------------|--------------------|--------------|------|------|------------------| | | | min. | max. | | | | Period PFS | t _{PFS} | | 125 | μs | | | PFS high time | t _{FS} | 480 | | ns | | | PFS set up time to clock | t _{sFS} | 15 | | ns | PDC = 2.048 MHz | | PFS hold time from clock | t _{hFS} | 20 | | ns | | | PFS high time | t _{FS} | 240 | | ns | | | PFS set up time to clock | t _{sFS} | 15 | | ns | PDC = 4.096 MHz | | PFS hold time from clock | t _{hFS} | 20 | | ns | | | PFS high time | t _{FS} | 120 | | ns | | | PFS set up time to clock | t _{sFS} | 10 | | ns | PDC = 8.192 MHz | | PFS hold time from clock | t _{hFS} | 20 | | ns | | | PFS high time | t _{FS} | 60 | | ns | | | PFS set up time to clock | t _{sFS} | 10 | | ns | PDC = 16.384 MHz | | PFS hold time from clock | t _{hFS} | 20 | | ns | | | PDC clock period | t _{CLK} | 480 | | ns | | | PDC clock period low | t _{CLK_L} | 232 | 251 | ns | PDC = 2.048 MHz | | PDC clock period high | t _{CLK_H} | 233 | 252 | ns | | | PDC clock period | t _{CLK} | 240 | | ns | | | PDC clock period low | t _{CLK_L} | 112 | 131 | ns | PDC = 4.096 MHz | | PDC clock period high | t _{CLK_H} | 113 | 132 | ns | | | PDC clock period | t _{CLK} | 120 | | ns | | | PDC clock period low | t _{CLK_L} | 51 | 70 | ns | PDC = 8.192 MHz | | PDC clock period high | t _{CLK_H} | 52 | 71 | ns | | | PDC clock period | t _{CLK} | 60 | | ns | | | PDC clock period low | t _{CLK_L} | 26 | 34 | ns | PDC = 16.384 MHz | | PDC clock period high | t _{CLK_H} | 27 | 35 | ns | | | PDC rise time | t _r | | 10 | ns | | | PDC fall time | t _f | | 10 | ns | | Table 22 PCM Timing (cont'd) | Parameter | Symbol | Limit Values | | Unit | Test Condition | |-------------------------------|-------------------|--------------|------------------|------|------------------| | | | min. | max. | | | | Serial data input set up time | t _{sIN} | 20 | | ns | PDC = 2.048 MHz | | Serial data input hold time | t _{hIN} | 30 | | ns | | | Serial data input set up time | t _{sIN} | 20 | | ns | PDC = 4.096 MHz | | Serial data input hold time | t _{hIN} | 30 | | ns | | | Serial data input set up time | t _{sIN} | 20 | | ns | PDC = 8.192 MHz | | Serial data input hold time | t _{hIN} | 30 | | ns | | | Serial data input set up time | t _{sIN} | 20 | | ns | PDC = 16.384 MHz | | Serial data input hold time | t _{hIN} | 30 | | ns | | | Serial data output delay | t _{dOUT} | 0 | 30 ¹⁾ | ns | PDC = 2.048 MHz | | Serial data output delay | t _{dOUT} | 0 | 30 ¹⁾ | ns | PDC = 4.096 MHz | | Serial data output delay | t _{dOUT} | 0 | 30 ¹⁾ | ns | PDC = 8.192 MHz | | Serial data output delay | t _{dOUT} | 0 | 30 ¹⁾ | ns | PDC = 16.384 MHz | ¹⁾ for PCM Master, the maximum delay is 15 ns. ## **Timing Diagrams** # 7.2 PCM Parallel Mode Timing Figure 32 Parallel Mode Timing **Table 23** PCM Parallel Mode Timing | Parameter | Symbol | Limit Values | | Unit | Test Condition | |---------------------------|--------------------|--------------|------|------|-----------------| | | | min. | max. | | | | Frame setup time to clock | T _{FS} | 125 | | ns | | | Frame hold time to clock | T _{FH} | 125 | | ns | | | Input data setup time | T _{DS} | 50 | | ns | | | Input data hold time | T _{DH} | 15 | | ns | | | Output data delay | T _{DD} | | 35 | ns | | | PDC clock period | T _{CLK} | 483 | 493 | ns | PDC = 2.048 MHz | | PDC clock period high | T _{CLK_H} | 231 | 257 | ns | | | PDC clock period low | T _{CLK_L} | 231 | 257 | ns | | **Timing Diagrams** ## 7.3 Microprocessor Interface Timing Microprocessor accesses of the SWITI are performed by an activation of the address and $\overline{\text{CS}}$. - By driving the MODE16 pin 'low' the user selects the 8-bit microprocessor interface, by driving it 'high' - the 16-bit microprocessor interface. - By driving the ALE pin 'high' the user selects Intel/Infineon mode, by driving it 'low' -Motorola mode. The pin is sampled during the hardware reset process. - In Intel/Infineon mode, a distinction is needed between working in multiplexed address/data bus mode and de-multiplexed address and data bus mode. In Motorola mode, only de-multiplexed busses are used. By driving the ALE pin 'high' during the normal operation the user selects the de-multiplexed mode, a falling or rising edge during the normal operation selects the multiplexed mode. ## 7.3.1 Infineon/Intel Timing in De-Multiplexed Mode In this mode driving $\overline{\text{RD}}$ 'low' causes a read access, driving $\overline{\text{WR}}$ 'low' causes a write access. In de-multiplexed bus configuration, ALE must be driven 'high'. Table 24 Infineon/Intel Timing in De-Multiplexed Mode | Parameter | Symbol | Limit Values
(C _{LOAD} = 50pF) | | | |-----------------------------------|-----------------|--|-------|--| | | | min | max | | | Address setup time to WR or RD | t _{AS} | 15 ns | | | | RD pulse width | t _{RR} | 60 ns | | | | RD recovery time | t _{RI} | 120 ns | | | | Data output delay from RD active | t _{RD} | | 60 ns | | | Data float delay from RD inactive | t _{DF} | | 15 ns | | | WR pulse width | t _{WW} | 40 ns | | | | WR recovery time | t _{WI} | 120 ns | | | | Data setup time to WR x CS | t _{DW} | 20 ns | | | | Data hold time from WR x CS | t _{WD} | 10 ns | | | Note: The read/write recovery time (t_{RI} and t_{WI}) are required only for consecutive accesses to the microprocessor interface ## **Timing Diagrams** Figure 33 Infineon/Intel Read Cycle in De-Multiplexed Mode Figure 34 Infineon/Intel Write Cycle in De-Multiplexed Mode Addresses will be latched with the falling $\overline{\mbox{WR}}$ edge during the write cycle internally. # 7.3.2 Infineon/Intel Timing in Multiplexed Mode In this mode the ALE pin is used to lock the address send via the multiplexed A/D bus. Table 25 Infineon/Intel Timing in Multiplexed Mode | Symbol | Limit Values
(C _{LOAD} = 50pF) | | | |------------------|---|--|--| | | min | max | | | t _{AA} | 15 ns | | | | t _{AL} | 15 ns | | | | t _{LA} | 5 ns | | | | t _{ALS} | 5 ns | | | | t _{RR} | 60 ns | | | | t _{RI} | 120 ns | | | | t _{RD} | | 60 ns | | | t _{DF} | | 15 ns | | | t _{WW} | 40 ns | | | | t _{WI} | 120 ns | | | | t _{DW} | 20 ns | | | | t _{WD} | 10 ns | | | | | t _{AA} t _{AL} t _{LA} t _{LA} t _{RR} t _{RI} t _{RD} t _{DF} t _{WW} t _{WI} t _{DW} | (C _{LOAD} = 5 min t _{AA} | | Figure 35 Infineon/Intel Read Cycle in Multiplexed Mode ## **Timing Diagrams** Figure 36 Infineon/Intel Write Cycle in Multiplexed Mode ## 7.3.3 Motorola Microprocessor Timing In this mode R/\overline{W} distinguishes between Read and Write interactions, and \overline{DS} is used for timing. \overline{DS} X CS is active (low) when both, \overline{DS} and \overline{CS} , are active (low). The ALE pin must be driven 'low'. **Table 26** Motorola Timing | Parameter | Symbol | Limit Values (C _{LOAD} = 50pF) | | |--|------------------|--|-------| | | | min | max | | Address setup time to CSxDS | t _{AS} | 15 ns | | | R or \overline{W} setup to \overline{DS} | t _{DSD} | 0 | | | R/W hold from CSxDS inactive | t _{RWD} | 0 | | | R pulse width | t _{RR} | 60 ns | | | R recovery time | t _{RI} | 120 ns | | | Data output delay from R | t _{RD} | | 60 ns | | Data float delay from R | t _{DF} | | 15 ns | | $\overline{\overline{W}}$ pulse width | t _{WW} | 40 ns | | | W recovery time | t _{WI} | 120 ns | | | Data setup time to \overline{W} and \overline{CS} , \overline{DS} and \overline{CS} | t _{DW} | 10 ns | | | Data hold time from
\overline{W} and \overline{CS} , \overline{DS} and \overline{CS} | t _{WD} | 10 ns | | Note: $\overline{DS \times CS}$ is active (low) when, both, \overline{DS} and \overline{CS} are active (low) Figure 37 Motorola Read Cycle Figure 38 Motorola Write Cycle # **Timing Diagrams** # 7.4 JTAG Interface Timing Table 27 JTAG Interface Timing | Parameter Symbol Limit Valu | | it Values U | | it Notes | | | |---|-------------------|-------------|------|----------|----|--------------------------------------| | | | min. | typ. | max. | | | | Test Clock (TCK) Period | t _{TCJ} | 100 | | | ns | | | Test Clock (TCK) Period
Low | t _{CJL} | 40 | | | ns | | | Test Clock (TCK) Period
High | t _{CJH} | 40 | | | ns | | | TMS Set-up time before TCK Rising Edge | t _{SUJ} | 5 | | | ns | | | TMS Hold time after TCK
Rising Edge | t _{HJR} | 5 | | | ns | | | TDI Set-up time before TCK
Rising Edge | t _{DSE} | 5 | | | ns | | | TDI Hold time after TCK
Rising Edge | t _{DHE} | 5 | | | ns | | | Input Data Set-up time | t _{IPJ} | 10 | | | ns | | | Input Data Hold time | t _{IAJ} | 10 | | | ns | | | TDO Delay after TCK
Falling Edge | t _{ODF} | | | 20 | ns | | | Any output pin Delay after TCK Falling Edge | t _{OPD} | | | 25 | ns | In Update-DR TAP
Controller State | | Test Reset | t _{TRST} | 1 | | | μs | | Figure 39 Boundary Scan Timing # PRELIMINARY Timing Diagrams # 7.5 Hardware Reset Timing Table 28 Hardware Reset Timing | Parameter | Symbol | Limit Values | | | Unit | Notes | |---------------------|--------------------|--------------|------|------|------|-------| | | | min. | typ. | max. | | | | Hardware Reset time | t _{RESET} | 1 | | | μs | | Figure 40 Hardware Reset Timing #### **Electrical Characteristics** ## 8 Electrical Characteristics ## 8.1 Absolute Maximum Ratings Table 29 Absolute Maximum Ratings | Parameter | Symbol | Limit Values | Unit | |---|----------------------|--------------|------| | Ambient temperature under bias PEF | T_{A} | - 40 to 85 | °C | | Storage temperature | T_{stg} | - 65 to 150 | °C | | Supply voltage | V_{DD} | - 0.5 to 4.6 | V | | Voltage on any input or output pin (referenced to ground) | V_{S} | - 0.5 to 5.5 | V | | ESD robustness ¹⁾ (HBM: 1.5 k Ω , 100 pF) | V _{ESD,HBM} | 1500 | V | ¹⁾ According to MIL-Std 883D, method 3015.7 and ESD Ass. Standard EOS/ESD-5.1-1993. Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. # 8.2 Operating Range Table 30 Operating Range | Parameter | Symbol | Limit | Unit | | |--|---------------------|-------|---------------------|--------| | | | min. | max. | | | Operating temperature | T_{A} | - 40 | 85 | °C | | Supply voltage | V_{DD} | 3.13 | 3.47 | ٧ | | Ground | V_{SS} | 0 | 0 | ٧ | | Voltage applied to input pins | V_{IN} | 0 | 5.5 | ٧ | | Voltage applied to output or I/O pins outputs enabled outputs high-Z | $V_{OUT} \ V_{OUT}$ | 0 | V _{DD} 5.5 | V
V | Note: In the operating range, the functions given in the circuit description are fulfilled. #### **Electrical Characteristics** ## 8.3 Crystal Oscillator The SWITI requires a 16.384 MHz or 32.768 MHz clock source. To supply this a 16.384 MHz or 32.768 MHz crystal can be connected between the ECLKI and ECLKO pins. **Figure 41** shows the crystal with the external capacitors. Figure 41 External Crystal If a crystal is not used, a 16.384 MHz or a 32.768 MHz signal must be provided to the ECLKI pin and ECLKO should be left unconnected. Table 31 External Capacitances for Crystal (Recommendation) | Parameter | Symbol | Rec. Values | Unit | Notes | |-----------------------------------|-----------------|-------------|------|-------| | Clock external input capacitance | C_{ECLKI} | 12 | pF | | | Clock external output capacitance | $C_{\sf ECLKO}$ | 18 | pF | | #### **Electrical Characteristics** ## 8.4 DC Characteristics Table 32 DC Characteristics | Parameter | Symbol | Limit Values | | Unit | Notes | |------------------------------|--------------|--------------|----------------------|------|--| | | | min. | max. | | | | Input low voltage | V_{IL} | - 0.3 | 0.8 | V | | | Input high voltage | V_{IH} | 2.0 | V _{DD} +3.3 | V | The maximum $V_{\rm IH}$ must not exceed 5.5 V | | Output low voltage | V_{OL} | | 0.4 | V | $I_{\rm OL}$ = 6 mA | | Output high voltage | V_{OH} | 2.4 | | V | $I_{OH} = -2.0 \text{ mA}$ | | Typical power supply current | $I_{\rm CC}$ | | 200 | mA | $V_{\rm DD}$ = 3.3 V,
$T_{\rm A}$ = 25 °C:
PDC = 16.384 MHz | | Input leakage current | I_{IL} | | 1 | μΑ | $V_{\rm DD}$ = 3.3 V, GND = 0 V;
all other pins are floating;
$V_{\rm IN}$ = 0 V | | Output leakage current | I_{OZ} | | 1 | μΑ | $V_{\rm DD}$ = 3.3 V, GND = 0 V;
$V_{\rm OUT}$ = 0 V | Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{\rm A}$ = 25 °C and the given supply voltage. # 8.5 Capacitances Table 33 Input/Output Capacitances | Parameter | Symbol | Limit Values | Unit | Notes | |--------------------------|-----------------|--------------|------|---| | | | Тур. | | | | ECLKI input capacitance | C_{ECLKI} | 7 | pF | f _C = 1 MHz The pins, which are not under test, are connected to GND | | ECLKO output capacitance | $C_{\sf ECLKO}$ | 7 | pF | | | Input capacitance | C_{IN} | 5 | pF | | | Output capacitance | C_{OUT} | 5 | pF | | #### **Electrical Characteristics** ## 8.6 AC Characteristics Ambient temperature under bias range, VDD = $3.3 \text{ V} \pm 5 \%$. Inputs are driven to 2.4 V for a logical '1' and to 0.4 V for a logical '0'. Timing measurements for all other signals are made at 2.0 V for a logical '1' and at 0.8 V for a logical '0'. The AC-testing input/output wave forms are shown below. Figure 42 I/O Wave Form for AC-Test **Package Outlines** # 9 Package Outlines Figure 43 Outlines of P-MQFP-100-2 #### **Sorts of Packing** Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device Dimensions in mm ## Α Analyze Memory 20 ## В Bidirectional Switching 18 Boundary Scan 35, 37 Broadcast 7 Broadcast Switching 18 ## C Clock Shift 6 Constant Delay 6, 17 ## D Data Rate Adaption 6 #### F Flexible Data Rates 6 Frame Group 34 Framing Group 7 ## G General Purpose Clocks 7, 33 GPIO Port 7, 33 Initialization Procedure 82 Input/Output Tolerance 8 Interrupts Masking 75 # L Local Bus Interface 12, 29 # M Message Mode 7 Microprocessor Interface 7, 13, 16, 31 Minimum Delay 6 Multipoint 7 Multipoint Switching 17 ## P Parallel Mode 6, 19, 104 ## R Read Access 7 Register > Configuration Command Register 1 49 Configuration Command Register 2 Configuration Register Connection Command Register Destination Address Register Destination Port Address Register General Input Register General Input Register 1 44 General Input Register 2 46 General Purpose Direction Register 61 General Purpose Interrupt Register General Purpose Mask Register General Purpose Port Input Register General Purpose Port Output Register IDCODE Register 71 Input Time Slot Address Register Interrupt Error Mask Register 1 60 Interrupt Error Mask Register 2 60 Interrupt Error Status Register 70 Interrupt Error Status Register 1 58 Interrupt Error Status Register 2 58 Interrupt Mask Register 1 Interrupt Status Register 1 57 Message Value Register 56 Output Time Slot Address Register 43 Source Address Register 68 Source Address Register 68 Source Port Address Register 42 Sub-Channel Address Register 43 Time-Slot Value / Configuration Register 7 Time-Slot Value Register 63 # S Subchannel Switching 6, 90 # W Write Access 7 # Infineon goes for Business Excellence "Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results. Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction." Dr. Ulrich Schumacher http://www.infineon.com