Freescale Semiconductor, Inc. MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Order this document by MC92501/D

MC92501

Advance Information ATM Cell Processor

The MC92501 is an Asynchronous Transfer Mode (ATM) Cell Processor layer device composed of dedicated high-performance ingress and egress cell processors combined with UTOPIA Level 2-compliant physical (PHY) and UTOPIA Level 1-compliant switch interface (see **Figure 1**). It integrates address translation, UPC/NPC, OAM, and statistical functions into a single semiconductor device. This second generation ATM cell processor in Motorola's MC92500 series can be used both in the line cards used by the switching systems in the ATM network core and in the access multiplexer. The primary function of the MC92501 in either application is to provide ATM-layer cell processing and routing functions. The advanced ATM functionality permits simultaneous tranmission of voice, video, and data within broadband services such as high-speed Internet operations, LAN interconnections for commuters, and video-on-demand using a variety of applications such as Digital Subscriber Line Access Multiplexers (DSLAMs), Wide-Area Networks (WANs), Enterprise Switches, and Multi-service Platforms,

Figure 1. MC92501 Block Diagram

This document contains information on a new product. Specifications and information herein are subject to change without notice.

À MOTOROLA

For More Information On This Product, Go to: www.freescale.com

Table of Contents

	Table of Con For Technica Data Sheet C Features	ocessor	ii ii ii V
Sect 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11	Signal Group Power and G Control Signa Processor Int Ingress PHY Egress PHY PLL Signals . External Mer Ingress Switc Egress Switc	Signal Descriptions 1-7 Dings 1-7 Ground Signals 1-7 als 1-7 als 1-7 cerface Signals 1-7 Interface Signals 1-7 ch Interface Signals 1-1 ce Signals 1-1	1 3 4 6 7 8 9 0
Sect 2.1 2.2 2.3	Introduction GTBGA Pack	Signal and Packaging Information 2-7 	1 2
Sect 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	Absolute Ma Recommende DC Electrical Clocks Microprocess PHY Interfac Switch Interf	Specifications3-7	1 2 2 3 4 5 2 3
Sect 4.1 4.2		Test Information	1
Sect	ion 5	Ordering Information	1

FC	R TECHNICAL ASSISTANCE:
Telephone:	1-800-521-6274
Email:	TBD
Internet:	http://www.mot.com/SPS/MCTG/MDAD/atmo

Data Sheet Conventions

This data sheet uses the following conventions:

OVERBAR	Used to indicate a signal that is active when pulled low (For example, the RESET pin is active when low.)				
asserted	Means that a high true (active high) signal is high or that a low true (active low) signal is low				
deasserted	Means that a high true (active high) signal is low or that a low true (active low) signal is high				
Examples:	Signal/Symbol	Logic State	Signal State	Voltage	
	PIN	True	Asserted	V _{IL} /V _{OL}	
	PIN	False	Deasserted	V _{IH} /V _{OH}	
	PIN	True	Asserted	V _{IH} /V _{OH}	
	PIN	False	Deasserted	V _{IL} /V _{OL}	

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

New Features in the MC92501

- Implements ATM Layer functions for Broadband ISDN according to ANSI recommendations, ATM Forum UNI 4.0 and TM 4.0 Specifications, ITU recommendations, and Bellcore recommendations.
- Provides ABR Relative Rate marking and EFCI marking according to TM 4.0
- Select Discard CLP = 1 (or CLP = 0 + 1) Flow on selected connections
- UTOPIA Level 2 PHY Interface and UTOPIA ATM Layer Interface
- Supports both Partial Packet Discard (PPD) and Early Packet Discard (EPD)
- Change ABR RM Cell priority
- Supports CLP transparency
- Unidirectional (Ingress or Egress) UPC or NPC

Standard ATMC Features in the MC92500 Family

- Full duplex operation at data rates up to 155 Mbps
- Performs internal VPI and VCI address compression for up to 64 K VCs
- CLP-Aware peak, average, and burst-length policing with programmable Tag/ Drop action per policer
- Supports up to 16 physical links unsing dedicated Ingress/Egress multiPHY control signals
- Each physical link can be configured as either a UNI or NNI port
- Supports multicast, multiport address translation
- Maintains both virtual connection and physical link counters on both Ingress and Egress cell flows
- Provides a flexible 32-bit external memory port for context management
- Automated AIS, RDI, CC, and loopback functions with performance monitoring block test on all 64 K connections
- Programmable 32-bit microprocessor interface supporting Big-Endian or Little-Endian bus formats
- Unidirectional (Ingress only) UPC or NPC design with up to four leaky buckets per connection
- Supports a programmable number of additional switch overhead parameters allowing adaptiation to any switch routing header format
- Provides per-link cell counters in both directions

Product Documentation

The three documents listed in the following table are required for complete description of the MC92501 and are necessary to design properly with the part. Documentation is available from one of the following locations (see back cover for detailed information):

- A local Motorola distributor
- A Motorola semiconductor sales office
- A Motorola Literature Distribution Center
- The World Wide Web (WWW)

Name Description		Order Number
MC92501 Product Brief	MC92501 product overview	MC92501/P
MC92501 Technical Data	MC92501 features list and physical, electrical, timing, and package specifications	MC92501/D
MC92501 User's Manual	Detailed functional description of the MC92501 configuration, operation, and register programming	MC92501UM/D
ATM Cell Processor Evaluation Board User's Manual	Detailed description of the ATMC EVB hardware, operation, installation, and design recommendations	MC92501EVKUM/D

Table 1. MC92501 Documentation

Signal Descriptions

1.1 Signal Groupings

The input and output signals of the MC92501 are organized into functional groups, as shown in **Table 1-1** and as illustrated in **Figure 1-1**. The MC92501 is operated from a 3.3 V supply; however, some of the inputs can tolerate 5 V. A special note for this feature is added to the signal descriptions of those inputs.

Functional Group	Number of Signals	Detailed Description
Power (VDD and AVDD) and Ground (VSS and AVSS)	47	Table 1-2
Control	4	Table 1-3
Processor Interface	68	Table 1-4
Ingress PHY Interface	17	Table 1-6
Egress PHY Interface	18	Table 1-7
PLL	4	Table 1-8
External Memory Interface	64	Table 1-9
Ingress Switch Interface	13	Table 1-10
Egress Switch Interface	13	Table 1-11
JTAG Interface	5	Table 1-12

Table 1-1.	MC92501	Functional	Signal	Groupings
------------	---------	------------	--------	-----------

MC92501

1.2 Power and Ground Signals

Signal Name	Description		
VDD	Input Power		
AVDD	PLL Analog Power—Isolate this input to eliminate coupling of digital switching noise into the PLL		
VSS	System Ground		
AVSS	PLL Analog Ground—Isolate this input to eliminate coupling of digital switching noise into the PLL		

1.3 Control Signals

Signal Name	Signal Type	Detailed Description		
ARST	Input	ATMC Power-up Reset —This input signal is used for power-up reset of the entire chip. It must be asserted for at least the time required by the PLL to stabilize.		
AMODE0– AMODE1	Input	ATMC Mode —These input signals determine the operating mode of the chip's test features. In normal usage these pins should be grounded.		
ENID	Input	Enable IDD —This input pin is used for test purposes. In normal usage the ENID pin must be grounded.		

Table 1-3. Control Signals

Note: All inputs are 5 V tolerant.

1.4 Processor Interface Signals

Table 1-4. Processor Interface Signals

Signal Name	Signal Type	Detailed Description		
MCLK	Input	MP Clock —This input signal is used as the Microprocessor clock inside the MC92501. This signal drives the microprocessor logic in the MC92501. The duty cycle should be in the range of 40–60%.		
MADD2– MADD25	Input	MP Address Bus —This input bus contains the address which is used by the microprocessor to define the register being accessed. This bus is used by the MC92501 at the assertion of MSEL and sampled on the falling edge of MCLK.		
MWR	Input	MP Write —This input signal is used to determine whether the MP is reading from the MC92501 or writing to it. This signal is sampled by the MC92501 on the falling edge of MCLK. The MC92501 drives MDATA when $MSEL = 0$ and $MWR = 1$.		
MSEL	Input	MP Select —This input signal is used to determine that the current access to the MC92501 is valid. This signal is sampled by the MC92501 on the falling edge of MCLK.		
MDS	Input	MP Data Select —This input signal is used to indicate when the data on MDATA is valid during a write access to the MC92501. This signal is sampled by the MC92501 on the falling edge of MCLK.		
MWSH	Input	 MP Word Write Enable High—This signal indicates that the high word is being written. During a maintenance write access, the value detected on MW SH/A1 is driven on the appropriate EMBSH signal. During read access EMBSH signal is always asserted. Address 1—When configured appropriately during a maintenance write access, this signal serves as Address 1. During a read access, this signal is ignored. Note: This input signal is programmed by the <i>Word Select Signals Mode (WSSM)</i> bit in the Microprocessor Configuration Register (MPCONR). The signal is sampled by the MC92501 on the falling edge of MCLK. Table 1-5 describes the combined MWSH/A1 and MWSL/Size functionality 		
MWSL	Input	MP Word Write Enable Low —This signal indicates that the high word is being written. During a maintenance write <u>access</u> , the value detected on MW <u>SL/SIZE</u> is driven on the appropriate EMBSL signal. During read access EMBSL signal is always asserted.		
SIZE	Input	 Access Size—When configured appropriately during a maintenance write access, this signal indicates the size of the maintenance write access: either 32 bits or 16 bits access. During a read access, this signal is ignored and the access width is 32 bits. Note: This input signal is programmed by the <i>Word Select Signals Mode (WSSM)</i> bit in the Microprocessor Configuration Register (MPCONR). The signal is sampled by the MC92501 on the falling edge of MCLK. Table 1-5 describes the combined MWSH/A1 and MWSL/Size functionality 		

Signal Name	Signal Type	Detailed Description		
MDTACK0– MDTACK1	Output	MP Data Acknowledge 0–1 —These tri-statable output signals are used to indicate the end of an access from the MC92501. At the end of each access, this signal is actively pulled up and then released. The user may program the MC92501 not to drive this signal during certain types of accesses. This signal is output asynchronously to MCLK.		
MDATA0– MDATA31	Input/Output	MP Data Bus —This tri-state bidirectional bus provides the general data path between the MC92501 and the microprocessor.		
MINT	Output	MP Interrupt —This output signal is used to notify the microprocessor of the occurrence of interrupting events. This signal is asserted on the rising edge of ACLK (asynchronous with respect to MCLK).		
MREQ0	Output	MP Request 0 —This output signal can be programmed to one of three options (described below in note 2). Its default value is option #1: MP Cell In Request (MCIREQ).		
MREQ1	Output	MP Request 1 —This output signal can be programmed to one of three options (described below in note 2). Its default value is option #2: MP Cell Out Request (MCOREQ)		
MREQ2	Output	MP Request 2 —This output signal can be programmed to one of of three options (described below in note 2). Its default value is option #3: External Memory Maintenance Request (EMMREQ).		

Table 1-4.	Processor	Interface Signals	(Continued)
------------	-----------	-------------------	-------------

Notes: 1. All inputs are 5 V tolerant.

2. MREQ0, MREQ1 and MREQ2 signals are fully backward compatible to the MC92501 Revision A MCIREQ, MCOREQ and EMMREQ signals, respectively. The MREQ[n] signals are used by DMA devices and can be programmed to support DMA requests as follows:

- MP Cell In Request: MREQ[n] is an output signal that can be used by an external DMA device as a control line indicating when to start a new cell insertion cycle into the MC92501. It is asserted whenever the Cell Insertion Register array is available to be written. This signal is output on the falling edge of MCLK.
- MP Cell Out Request: MREQ[n] is an output signal may be used by an external DMA device as a control line indicating when to start a new cell extraction cycle from the MC92501. It is asserted whenever the Cell Extraction Register array is available to be read. It is output on the falling edge of MCLK.
- External Memory Maintenance Request: MREQ[n] is an output signal is asserted a programmable number of clock cycles before the start of an External Memory maintenance cycle. It is deasserted after a programmable number of maintenance accesses have been performed. It is output on the falling edge of MCLK.

<i>WSSM</i> = 0		WSSM = 1 and DO-Data Order = 0		<i>WSSM</i> = 1 and DO-Data Order=1		Function
MWSH	MWSL	A1	Size	A1	Size	
0	0	Х	0	Х	0	Write D(31:0)
0	1	0	1	1	1	Write D(31:16)
1	0	1	1	0	1	Write D(15:00)

Table 1-5. Host Interface Fields

Note: All Cell Extraction Register, Cell <u>Insertion</u> Register, and General Register accesses are longword (32-bit) accesses, so both MWSH/A1 and MWSL/SIZE should be asserted low for these write accesses when write-enable mode is selected.

1.5 Ingress PHY Interface Signals

Signal Name	Signal Type	Detailed Description
RXDATA0– RXDATA7	Input	Receive Data Bus —This input data bus receives octets from the PHY chip. When RXENB is active, RXDATA is sampled into the MC92501.
RXPRTY	Input	Receive Data Bus Parity (RXPRTY) —This input is the odd parity over RXDATA. This input is ignored if RXENB is not active or the parity check is disabled.
RXSOC	Input	Receive Start Of Cell (RXSOC) —This input, when high, indicates that the current RXDATA is the first byte of a cell. This input is sampled when RXENB is active.
RXEMPTY	Input	Receive PHY Empty —This input, when low, indicates that currently the PHY chip has no available data.
RXENB	Output	Receive Enable —This output, when low, indicates that the MC92501 is ready to receive data.
RXPHYID0– RXPHYID3 RXADDR0– RXADDR3	Input Output	Receive PHY Device ID Bus 0–3—In UTOPIA level 1, this is an input bus that indicates the ID number of the PHY device currently transferring data to the MC92501. If only a single PHY device is supported, this bus should be tied low. This bus is sampled along with the first octet of each cell. Receive Address 0–3—In UTOPIA Level 2, this is an output bus that indicates the 4 least significant bits of the ID number of the PHY device which is being polled or selected by the MC92501.
RXADDR4	Output	Receive Address 4—This signal is an output signal that indicates the most significant bit of the ID number of the PHY device that is being polled or selected by the MC92501.

Table 1-6. Ingress PHY Interface Signals

Note: All inputs are 5 V tolerant.

1.6 Egress PHY Interface Signals

Table 1-7.	Egress PHY	Interface Signals
------------	------------	-------------------

Signal Name	Signal Type	Detailed Description
TXFULL	Input	Transmit PHY Full —This input signal indicates, when low, that the PHY device is full.
TXDATA0– TXDATA7	Output	Transmit Data Bus —This output data bus transmits octets to the PHY chip. When TXENB is active, TXDATA contains a valid octet for the PHY.
TXPRTY	Output	Transmit Data Bus Parity —This output signal is the odd parity over TXDATA. When TXENB is active, TXPRTY is a valid parity bit for the PHY.
TXSOC	Output	Transmit Start Of Cell —This output signal indicates, when high, that the cu <u>rrent da</u> ta on TXDATA is the first byte of a cell. TXSOC is valid when TXENB is asserted.
TXENB	Output	Transmit Enable —This output signal, when low, indicates that TXDATA, TXPRTY, and TXSOC are valid data for the PHY.
TXCCLR	Input	Transmit Cell Clear —This input signal indicates, when low, that the current cell should be cleared from the Egress PHY interface.
TXPHYID0– TXPHYID3 TXADDR0– TXADDR3	Output Output	Transmit PHY ID 0–3—In UTOPIA level 1, this is an output bus that indicates the ID number of the PHY device to which either the current cell or the next cell is directed. The functionality is controlled by the MC92501 General Configuration Register (GCR). Transmit Address 0–3—In UTOPIA level 2, this is an output bus that indicates the 4 least significant bits of the ID number of the PHY device
	Output	which is being polled or selected by the MC92501. Transmit Next PHY ID Valid —In UTOPIA level 1, this is an output
TXADDR4	Output	signal that, when low, indicates that TXPHYID (when configured as the next <u>cell's ID) is</u> valid. If TXPHYID is configured to refer to the current cell, TXPHYIDV is not used. Transmit Address 4 —In UTOPIA level 2, this an output signal that indicates the most significant bit of the ID number of the PHY device which is being polled or selected by the MC92501.

Note: All inputs are 5 V tolerant.

1.7 PLL Signals

Table	1-8.	PLL	Signals
-------	------	-----	---------

Signal Name	Signal Type	Detailed Description
ACLK	Input	ATMC Master Clock —This input signal is used by the PLL to generate the internal master clock of MC92501. The duty cycle should be in the range of 40–60%.
TESTSEL	Input	This is a dedicated test signal that must be grounded during normal system operation.
TESTOUT	Input/Output	This is a dedicated test signal that must be connected to the analog ground (AVSS) during normal system operation.
VCOCTL	Input/Output	This is a dedicated test signal that must be connected to the analog ground (AVSS) during normal system operation.

Note: All inputs are 5 V tolerant.

1.8 External Memory Interface Signals

Table 1-9. External Memory Interface Signals

Signal Name	Signal Type	Detailed Description
EMDATA0– EMDATA31	Input/Output	External Memory Data Bus —This tri-statable bidirectional bus is the data path between the MC92501 and External Memory.
EMADD2– EMADD23	Output	External Memory Address Bus—This output bus is the general address bus used by the MC92501 to access the External Memory.
EMWR	Output	External Memory Write —When asserted (low), this output signal indicates that the current cycle to the External Memory is a write cycle. This signal is asserted within the cycle.
EMBSH0 EMBSH3	Output	External Memory Bank Select High —These output signals are used to select the high word of the appropriate memory bank. One or more of these signals is asserted for each External Memory access according to the value of EMADD. During a mainten <u>ance write access from the microprocessor, the</u> value detected on MWSH is driven on the appropriate EMBSH signal.
EMBSL0- EMBSL3	Output	External Memory Bank Select Low —These output signals are used to select the low word of the appropriate memory bank. One or more of these signals is asserted for each External Memory access according to the value of EMADD. During a mainten <u>ance write access from the microprocessor, the</u> value detected on MWSL is driven on the appropriate EMBSL signal.

Go to: www.freescale.com

Signal Name	Signal Type	Detailed Description
EACEN	Output	External Address Compression Enable —This output signal is asserted when data is being written to or read from an external address compression device using the External Memory Data Bus.

 Table 1-9.
 External Memory Interface Signals (Continued)

Note: All inputs are 5 V tolerant.

1.9 Ingress Switch Interface Signals

Signal Name	Signal Type	Detailed Description
SRXDATA0– SRXDATA7	Output	Receive DATA BUS (SRXDATA0-SRXDATA7) —This three-state output data bus transmits bytes to the switch. When SRXENB is active, SRXDATA contains valid data for the switch. This bus is updated on the rising edge of SRXCLK.
SRXPRTY	Output	Receive Data Bus Parity —This three-state output is the parity protection of SRXDATA transmitted to the switch. The type of parity (even/odd) is defined by the Ingress Switch Interface Configuration Register (ISWCR)
SRXSOC	Output	Receive Start Of Cell —This three-state output, when high, indicates that the current data on SRXDATA is the first byte of a cell structure (including the overhead bytes).
SRXCLAV	Output	Receive Switch Cell Available —This output, when asserted, indicates that the MC92501 has a cell ready to transfer to the switch. When deasserted, it indicates that currently there is no data available for the switch.
SRXENB	Input	Receive Enable —This input, when low, enables new values on SRXDATA, SRXPRTY and SRXSOC.
SRXCLK	Input	Receive Clock —This input is used to clock the Ingress switch interface signals.

Table 1-10. Ingress Switch Interface Signals

Note: All inputs are 5 V tolerant.

1.10 Egress Switch Interface Signals

Signal Name	Signal Type	Detailed Description
STXCLAV	Output	Transmit Cell Available —This output, when asserted, indicates that the MC92501 is prepared to receive a complete cell.
STXDATA0– STXDATA7	Input	Transmit Data Bus —This input data bus receives bytes from the switch. When STXENB is asserted, STXDATA is sampled into the MC92501 on the rising edge of STXCLK.
STXPRTY	Input	Transmit Data Bus Parity —This input is the parity over STXDATA. The type of parity (even/odd) and the parity check control are defined by the Egress Switch Interface Configuration Register (ESWCR). This input is ignored if STXENB is deasserted or the parity check is disabled. It is sampled on the rising edge of STXCLK.
STXSOC	Input	Transmit Start Of Cell —This input indicates, when high, that the current data is the first byte of a cell structure (including the overhead bytes). This input is sampled on the rising edge of STXCLK when STXENB is asserted.
STXENB	Input	Transmit Enable —This input, when low, enables STXDATA, STXPRTY, and STXSOC.
STXCLK	Input	Transmit Clock —This input signal is used to clock the Egress switch interface signals.

Table 1-11. Egress Switch Interface Signals

Note: All inputs are 5 V tolerant.

1.11 JTAG Interface Signals

Table 1-12. JTAG Interface Signals	
--	--

Signal Name	Signal Type	Detailed Description
тск	Input	Test Clock —This input pin is the JTAG clock. The TDO, TDI, and TMS pins are synchronized by this signal.
TMS	Input	Test Mode Select —This input signal is sampled on the rising edge of TCK. TMS is responsible for the state change in the test access port state machine.
TDI	Input	Test Data Input —This input signal is sampled on the rising edge of TCK. TDI is the data to be shifted toward the TDO output.
TRST	Input	Test Reset —This input signal is the JTAG asynchronous reset. When asserted low, the Test Access Port is forced to the Test_Logic_Reset state. When JTAG is not being used, this signal should be hard-wired to GND or tied to ARST.
TDO	Output	Test Data Output —This tri-state output changes its logical value on the falling edge of TCK.

Note: All inputs are 5 V tolerant.

Signal and Packaging Information

2.1 Introduction

This section provides information on packaging, including a diagram of the package with signals and tables showing how the signals described in **Section 1** are allocated. The MC92501 is available in a 256-lead Glob-Top Ball Grid Array (GTBGA) package. The package mechanical drawing is provided at the end of this section.

2.2 GTBGA Package Description

A GTBGA package top view is shown in Figure 2-1 with signal and location designators.

Notes: 1. Locations marked as *nc* must not be connected.

2. The figure only shows the primary signal name for each lead. For the Ingress and Egress PHY Interface signals, the primary signal names are those used in UTOPIA Level 1. For UTOPIA Level 2, leads A17, A18, C17, and D16 change to RXADDR3, RXADDR2, RXADDR0, and RXADDR1, respectively. Leads R3, T2, T3, U1, and Y3 change to TXADDR0, TXADDR1, TXADDR3, TXADDR2, and TXADDR4, respectively. The Microprocessor signals also have an alternate configuration that changes leads A10 and A11 to signals A1 and SIZE, respectively.

Figure 2-1. MC92501 256-Lead GTBGA Diagram (Top View)

[
Location	Signal Name	Location	Signal Name	Location	Signal Name	Location	Signal Name
A1	VSS	B1	AVSS	C1	MADD18	D1	MADD19
A2	ACLK	B2	TESTSEL	C2	AVDD	D2	VCOCTL
A3	MADD16	B3	VSS	C3	TESTOUT	D3	VDD
A4	MADD13	B4	MADD15	C4	VDD	D4	VSS
A5	MADD9	B5	MADD12	C5	MADD14	D5	MADD17
A6	MADD6	B6	MADD8	C6	MADD11	D6	VDD
A7	MADD4	B7	MADD5	C7	MADD7	D7	MADD10
A8	MSEL	B8	MADD2	C8	MADD3	D8	VSS
A9	MINT	B9	MDTACK0	C9	MREQ1	D9	MREQ0
A10	MWSH/A1	B10	MWR	C10	MCLK	D10	MREQ2
A11	MWSL/SIZE	B11	SRXENB	C11	MDS	D11	VDD
A12	SRXDATA7	B12	SRXDATA6	C12	SRXDATA5	D12	SRXDATA4
A13	SRXDATA3	B13	SRXDATA2	C13	SRXDATA1	D13	VSS
A14	SRXDATA0	B14	SRXCLK	C14	SRXCLAV	D14	MDTACK1
A15	SRXSOC	B15	SRXPRTY	C15	RXADDR4	D15	VDD
A16	RXSOC	B16	RXENB	C16	RXEMPTY	D16	RXPHYID1/ RXADDR1
A17	RXPHYID3/ RXADDR3	B17	RXPRTY	C17	RXPHYID0/ RXADDR0	D17	VSS
A18	RXPHYID2/ RXADDR2	B18	VDD	C18	RXDATA7	D18	RXDATA4
A19	VSS	B19	VDD	C19	RXDATA5	D19	RXDATA1
A20	VSS	B20	RXDATA6	C20	RXDATA2	D20	EMDATA31

Table 2-1. MC92501 256-Lead GTBGA Package Signal List by Location

Location	Signal Name	Location	Signal Name	Location	Signal Name	Location	Signal Name
E1	MADD22	H1	MDATA6	L1	MDATA14	P1	MDATA25
E2	MADD21	H2	MDATA5	L2	MDATA15	P2	MDATA26
E3	MADD20	H3	MDATA4	L3	MDATA16	P3	MDATA28
E4	VSS	H4	VSS	L4	MDATA17	P4	MDATA31
E17	RXDATA3	H17	VSS	L17	VDD	P17	EMADD22
E18	RXDATA0	H18	EMDATA21	L18	EMDATA11	P18	VDD
E19	EMDATA30	H19	EMDATA20	L19	EMDATA10	P19	EMDATA1
E20	EMDATA27	H20	EMDATA19	L20	EMDATA12	P20	EMDATA2
F1	MDATA0	J1	MDATA10	M1	MDATA18	R1	MDATA27
F2	MADD25	J2	MDATA9	M2	MDATA19	R2	MDATA29
F3	MADD23	J3	MDATA8	M3	MDATA20	R3	TXPHYID0/ TXADDR0
F4	VDD	J4	MDATA7	M4	MDATA21	R4	VDD
F17	VDD	J17	EACEN	M17	EMDATA8	R17	VDD
F18	EMDATA29	J18	EMWR	M18	EMDATA7	R18	EMADD21
F19	EMDATA26	J19	EMDATA18	M19	EMDATA8	R19	EMADD23
F20	EMDATA24	J20	EMDATA17	M20	EMDATA9	R20	EMDATA0
G1	MDATA3	K1	MDATA13'	N1	MDATA22	T1	MDATA30
G2	MDATA2	K2	MDATA11	N2	MDATA23	Т2	TXPHYID1/ TXADDR1
G3	MDATA1	К3	MDATA12	N3	MDATA24	Т3	TXPHYID3/ TXADDR3
G4	MADD24	K4	VDD	N4	VSS	Τ4	TXDATA2
G17	EMDATA28	K17	EMDATA16	N17	VSS	T17	EMADD16
G18	EMDATA25	K18	EMDATA15	N18	EMDATA3	T18	VSS
G19	EMDATA23	K19	EMDATA14	N19	EMDATA4	T19	EMADD19
G20	EMDATA22	K20	EMDATA13	N20	EMDATA5	T20	EMADD20

 Table 2-1.
 MC92501 256-Lead GTBGA Package Signal List by Location (Continued)

Location	Signal Name	Location	Signal Name	Location	Signal Name	Location	Signal Name
U1	TXPHYID2/ TXADDR2	V1	TXDATA1	W1	TXDAT5	Y1	VSS
U2	TXDATA0	V2	TXDATA4	W2	VDD	Y2	VDD
U3	TXDATA3	V3	TXDATA6	W3	VSS	Y3	TXPHYIDV/ TXADDR4
U4	VSS	V4	TXSOC	W4	TXDATA7	Y4	TXCCLR
U5	TXPRTY	V5	TXFULL	W5	TXENB	Y5	STXENB
U6	VDD	V6	STXDATA0	W6	STXDATA2	Y6	STXDATA3
U7	STXDATA1	V7	STXDATA4	W7	STXDATA5	Y7	STXDATA6
U8	VSS	V8	STXDATA7	W8	STXPRTY	Y8	STXSOC
U9	STXCLAV	V9	STXCLK	W9	ENID	Y9	TDI
U10	VDD	V10	TMS	W10	TDO	Y10	TRST
U11	AMODE1	V11	AMODE0	W11	ARST	Y11	тск
U12	EMBSL1	V12	EMBSL2	W12	EMBSL3	Y12	nc
U13	VSS	V13	EMBSH3	W13	nc	Y13	EMBSL0
U14	EMADD3	V14	VDD	W14	EMBSH1	Y14	EMBSH2
U15	VDD	V15	EMADD4	W15	nc	Y15	EMBSH0
U16	EMADD9	V16	VSS	W16	EMADD5	Y16	EMADD2
U17	VSS	V17	EMADD10	W17	EMADD7	Y17	EMADD6
U18	EMADD15	V18	EMADD13	W18	EMADD11	Y18	EMADD8
U19	EMADD14	V19	VDD	W19	VDD	Y19	EMADD12
U20	EMADD18	V20	EMADD17	W20	VSS	Y20	VSS

Signal Name	Location	Signal Name	Location	Signal Name	Location	Signal Name	Location
A1	A10	EMADD21	R18	EMDATA10	L19	EMDATA29	F18
ACLK	A2	EMADD22	P17	EMDATA11	L18	EMDATA3	N18
AMODE0	V11	EMADD23	R19	EMDATA12	L20	EMDATA30	E19
AMODE1	U11	EMADD3	U14	EMDATA13	K20	EMDATA31	D20
ARST	W11	EMADD4	V15	EMDATA14	K19	EMDATA4	N19
AVDD	C2	EMADD5	W16	EMDATA15	K18	EMDATA5	N20
AVSS	B1	EMADD6	Y17	EMDATA16	K17	EMDATA7	M18
EACEN	J17	EMADD7	W17	EMDATA17	J20	EMDATA8	M17
EMADD10	V17	EMADD8	Y18	EMDATA18	J19	EMDATA8	M19
EMADD11	W18	EMADD9	U16	EMDATA19	H20	EMDATA9	M20
EMADD12	Y19	EMBSH0	Y15	EMDATA2	P20	EMWR	J18
EMADD13	V18	EMBSH1	W14	EMDATA20	H19	ENID	W9
EMADD14	U19	EMBSH2	Y14	EMDATA21	H18	MADD10	D7
EMADD15	U18	EMBSH3	V13	EMDATA22	G20	MADD11	C6
EMADD16	T17	EMBSL0	Y13	EMDATA23	G19	MADD12	B5
EMADD17	V20	EMBSL1	U12	EMDATA24	F20	MADD13	A4
EMADD18	U20	EMBSL2	V12	EMDATA25	G18	MADD14	C5
EMADD19	T19	EMBSL3	W12	EMDATA26	F19	MADD15	B4
EMADD2	Y16	EMDATA0	R20	EMDATA27	E20	MADD16	A3
EMADD20	T20	EMDATA1	P19	EMDATA28	G17	MADD17	D5

Table 2-2. MC92501	256-Lead GTBGA Pa	ckage Signal Lis	st by Name (Continued)

				-		-	-
Signal Name	Location	Signal Name	Location	Signal Name	Location	Signal Name	Location
MADD18	C1	MDATA16	L3	MDTACK0	B9	RXDATA7	C18
MADD19	D1	MDATA17	L4	MDTACK1	D14	RXEMPTY	C16
MADD2	B8	MDATA18	M1	MINT	A9	RXENB	B16
MADD20	E3	MDATA19	M2	MREQ0	D9	RXPHYID0	C17
MADD21	E2	MDATA2	G2	MREQ1	C9	RXPHYID1	D16
MADD22	E1	MDATA20	M3	MREQ2	D10	RXPHYID2	A18
MADD23	F3	MDATA21	M4	MSEL	A8	RXPHYID3	A17
MADD24	G4	MDATA22	N1	MWR	B10	RXPRTY	B17
MADD25	F2	MDATA23	N2	MWSH	A10	RXSOC	A16
MADD3	C8	MDATA24	N3	MWSL	A11	SIZE	A11
MADD4	A7	MDATA25	P1	nc	W13	SRXCLAV	C14
MADD5	B7	MDATA26	P2	nc	W15	SRXCLK	B14
MADD6	A6	MDATA27	R1	nc	Y12	SRXDATA0	A14
MADD7	C7	MDATA28	P3	RXADDR0	C17	SRXDATA1	C13
MADD8	B6	MDATA29	R2	RXADDR1	D16	SRXDATA2	B13
MADD9	A5	MDATA3	G1	RXADDR2	A18	SRXDATA3	A13
MCLK	C10	MDATA30	T1	RXADDR3	A17	SRXDATA4	D12
MDATA0	F1	MDATA31	P4	RXADDR4	C15	SRXDATA5	C12
MDATA1	G3	MDATA4	H3	RXDATA0	E18	SRXDATA6	B12
MDATA10	J1	MDATA5	H2	RXDATA1	D19	SRXDATA7	A12
MDATA11	K2	MDATA6	H1	RXDATA2	C20	SRXENB	B11
MDATA12	K3	MDATA7	J4	RXDATA3	E17	SRXPRTY	B15
MDATA13	K1	MDATA8	J3	RXDATA4	D18	SRXSOC	A15
MDATA14	L1	MDATA9	J2	RXDATA5	C19	STXCLAV	U9
MDATA15	L2	MDS	C11	RXDATA6	B20	STXCLK	V9

Signal Name	Location	Signal Name	Location	Signal Name	Location	Signal Name	Location
STXDATA0	V6	TXADDR4	Y3	VDD	C4	VSS	A20
STXDATA1	U7	TXCCLR	Y4	VDD	D11	VSS	B3
STXDATA2	W6	TXDAT5	W1	VDD	D15	VSS	D13
STXDATA3	Y6	TXDATA0	U2	VDD	D3	VSS	D17
STXDATA4	V7	TXDATA1	V1	VDD	D6	VSS	D4
STXDATA5	W7	TXDATA2	T4	VDD	F17	VSS	D8
STXDATA6	Y7	TXDATA3	U3	VDD	F4	VSS	E4
STXDATA7	V8	TXDATA4	V2	VDD	K4	VSS	H17
STXENB	Y5	TXDATA6	V3	VDD	L17	VSS	H4
STXPRTY	W8	TXDATA7	W4	VDD	P18	VSS	N17
STXSOC	Y8	TXENB	W5	VDD	R17	VSS	N4
ТСК	Y11	TXFULL	V5	VDD	R4	VSS	T18
TDI	Y9	TXPHYID0	R3	VDD	U10	VSS	U13
TDO	W10	TXPHYID1	T2	VDD	U15	VSS	U17
TESTOUT	C3	TXPHYID2	U1	VDD	U6	VSS	U4
TESTSEL	B2	TXPHYID3	Т3	VDD	V14	VSS	U8
TMS	V10	TXPHYIDV	Y3	VDD	V19	VSS	V16
TRST	Y10	TXPRTY	U5	VDD	W19	VSS	W20
TXADDR0	R3	TXSOC	V4	VDD	W2	VSS	W3
TXADDR1	T2	VCOCTL	D2	VDD	Y2	VSS	Y1
TXADDR2	U1	VDD	B18	VSS	A1	VSS	Y20
TXADDR3	Т3	VDD	B19	VSS	A19		

 Table 2-2.
 MC92501 256-Lead GTBGA Package Signal List by Name (Continued)

2.3 GTBGA Mechanical Drawing

Figure 2-2. Glob-Top Ball Grid Array (GTBGA) Package

Specifications

3.1 Introduction

This section provides the following sets of physical and electrical specifications for the MC92501:

- Absolute Maximum Ratings
- Recommended Operating Conditions
- DC Electrical Characteristics
- Clocks
- Microprocessor Interface Timing
- PHY Interface Timing
- Switch Interface Timing
- External Memory Interface Timing

3.2 Absolute Maximum Ratings

Table 3-1.	Absolute	Maximum	Ratings
------------	----------	---------	---------

Symbol	Parameter	Value/Value Range ¹	Unit
V _{DD}	DC Supply Voltage	-0.5 to 3.8	V
V _{IN} ²	DC Input Voltage (5 V Tolerant)	-0.5 to 5.8	V
V _{OUT} ^{2,3}	DC Output Voltage	-0.5 to V _{DD} + 0.5	V
I	DC Current Drain per Pin, Any Single Input or Output	±50	mA
I	DC Current Drain VDD and VSS Pins	±100	mA
T _{STG}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 s soldering)	300	°C

Notes: 1. Maximum ratings are those values beyond which damage to the device may occur.

- 2. All input, bidirectional, and MDTACK are 5 V Tolerant. For proper operation it is recommended that Vin and Vout be constrained to $0 \le (V_{IN}, V_{OUT}) \le 5.5 V$.
- 3. SRXDATAx, SRXSOC, SRXPRTY, TDO tri-state outputs must be constrained to $0 \le V_{OUT} \le V_{DD}$ in the high impedance state.
- 4. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

3.3 Recommended Operating Conditions

Table 3-2. Recommended Operating Conditions to Guarantee Functionality

Symbol	Parameter	Min	Мах	Unit
V _{DD}	DC Supply Voltage, $V_{DD} = 3.3V$ (Nominal)	3.0	3.6	V
V _{in}	Input Voltage (5V Tolerant)	0	5.5	V
T _A	Industrial Operating Temperature	-40	85	°C

Notes: 1. All parameters are characterized for DC conditions after thermal equilibrium has been established.

 Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{ss} or V_{DD}).

3. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

3.4 DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{IH}	TTL Inputs (5V Tolerant)	—	2.2	5.5	V
V _{IL}	TTL Inputs (5V Tolerant)	—	-0.3	0.8	V
I _{IN}	Input Leakage Current, No Pull Resistor	$V_{IN} = V_{DD}$ or V_{SS}	-5	5	μA
-	With Pullup Resistor *		-50	-5	
	With Pulldown Resistor *		5	50	
I _{ОН}	Output High Current, LVTTL Output Type Outputs: EACEN, EMWR, EMADDx, EMBSHx, EMBSLx	V _{DD} = Min, V _{OH} Min = 0.8 V _{DD}	-24	_	mA
	Output High Current, LVTTL Output Type Outputs: All other outputs		-4	_	
I _{OL}	Output Low Current, LVTTL Output Type Outputs: EACEN, EMWR, EMADDx, EMBSHx, EMBSLx	V _{DD} = Min, V _{OL} Max = 0.4 V	24	_	mA
	Output Low Current, LVTTL Output Type Outputs: All other outputs		4		
I _{OZ}	Output Leakage Current, Tri-State Output	Output = High Impedance $V_{OUT} = V_{DD}$ or V_{SS}	-10	10	μA
I _{DDQ}	Max Quiescent Supply Current	I _{OUT} = 0 mA V _{IN} = V _{DD} or V _{SS}	10		μA
I _{DD}	Max Dynamic Supply Current	Nominal Load Capacitance, ACLK = 25.6 Mhz, MCLK = 33 Mhz	300 ¹		mA
CI	Input Capacitance (TTL)	—		8	pF

Table 3-3. DC Electrical Characteristics

Freescale Semiconductor, Inc.

Notes: 1. Under Typical Loca, 25 Mhz ACLK/MCLK

2. $T_A = -40^{\circ}C$ to 85°C, $V_{DD}=3.3 \text{ V} \pm 0.3 \text{ V}$ Guaranteed

3. Inputs may be modified to include pullup resistors at any time.

4. See Section 1 for pin input/output type.

3.5 Clocks

Table 3-4. Clock Timing

Num	Characteristics		Мах	Unit
C1	ACLK Cycle Time	39	80	ns
C2	ACLK Pulse Width Low	15	—	ns
C3	ACLK Pulse Width High	15	—	ns
C4	ACLK Rise/Fall Time		5	ns
C5	MCLK Cycle Time	30	—	ns
C6	MCLK Pulse Width Low	12	—	ns
C7	MCLK Pulse Width High	12	—	ns
C8	MCLK Rise/Fall Time	_	5	ns
C9	SRXCLK/STXCLK Cycle Time	30	—	ns
C10	SRXCLK/STXCLK Pulse Width Low	12	—	ns
C11	SRXCLK/STXCLK Pulse Width High	12	—	ns
C12	SRXCLK/STXCLK Rise/Fall Time		5	ns

Figure 3-1. Clock Timing Diagrams

3.6 Microprocessor Interface Timing

The timing diagrams in this section are intended to convey setup and hold values for input signals and propagation delay values for output signals. For functional timing diagrams, see Section 4.5 Microprocessor Interface.

Num	Characteristics	Min	Max	Unit
1	MSEL setup time before MCLK falling edge	5		ns
2	MSEL hold time after MCLK falling edge	1		ns
3	MADD/MWR setup time before MSEL assertion	5		ns
4	MADD/MWR hold time after MCLK falling edge ¹	3		ns
5	MDS setup time before MCLK falling edge	5		ns
6	MDS hold time after MCLK falling edge	1		ns
7	MDATA setup time before MCLK falling edge	4		ns
8	MDATA hold time after MCLK falling edge	1		ns
9	MSEL assertion to MDATA active	0		ns
11	MCLK falling edge to MDATA valid for CER Accesses ²		26	ns
12	MSEL deassertion to MDATA invalid	1		ns
13	MSEL deassertion to MDATA inactive		11	ns
14	MWR assertion to MDATA invalid	1		ns
15	MWR assertion to MDATA inactive		11	ns
16	MCLK rising edge to MDATA valid for Maintenance Accesses ^{2,3}		T_{D}	ns
17	MCLK falling edge to MDATA valid for General Register Accesses ^{2,4}		Τ _R	ns
19	MSEL assertion to MDTACK active	0		ns
20	MCLK falling edge to MDTACK inactive		12	ns
21	MSEL assertion to MDTACK0 asserted ⁵		9	ns
22	MSEL deassertion to MDTACK deasserted ⁵		13	ns
23	MCLK rising edge to MDTACK asserted ⁵		13	ns
24	MWSH, MWSL setup time before MCLK falling edge ¹	2		ns
25	WWSH, WWSL hold time after MCLK falling edge ¹	3		ns
26	MCLK falling edge to REQ valid	0	14	ns

Table 3-5.	Microprocessor	Interface	Timings
------------	----------------	-----------	---------

Num	Characteristics	Min	Мах	Unit
27	MCLK falling edge to MDTACK asserted for General Register Read Accesses ^{5,6}		T _{RD}	ns
28	MCLK falling edge to MDTACK asserted for General Register Write Accesses ^{5,7}		T_{WD}	ns
29	Access width (MCLK falling edge to MSEL deassertion) for General Register Write Accesses ⁸	T_{W}		
30	MSEL assertion to MDTACK1 asserted ⁹		12	ns
31	MDTACK0 assertion to MDTACK1 assertion	0	5	ns

Table 3-5. Microprocessor Interface Timings (Continued)

Notes: 1. This refers only to the first falling edge of MCLK in each access at which MSEL is asserted.

2. This is for a 150 pF load. Add 0.9 ns for each additional 10 pF. For a 100 pF load, subtract 4 ns.

- 3. T_D = External Memory access time + 18 ns
- 4. $T_R = 4 * ACLK period + 20 ns$

5. This is for a 50 pF load.

- 6. $T_{RD} = 4 * ACLK period + 11 ns$
- 7. T_{WD} is measured from the MCLK falling edge at which \overline{MDS} is sampled as asserted. T_{WD} = 4 * ACLK period + 11 ns
- T_W is measured from the MCLK falling edge at which MDS is sampled as asserted. T_W = 4 * ACLK period. Note that the setup and hold times with respect to MCLK (timing values 1 and 2) still apply.
- 9. This is for a 50 pF load.

MC92501

Figure 3-2. Cell Extraction Register Read Access Timing

Figure 3-3. Maintenance Read Access Timing

MC92501

Figure 3-4. General Register Read Access Timing

Freescale Semiconductor, Inc.

MC92501

Figure 3-7. DMA Request Signals Timing

3.7 PHY Interface Timing

Table 3-6. PHY Interface Timings

Num	Characteristics		Max	Unit
51	Setup time before ACLK rising edge		—	ns
52	Hold time after ACLK rising edge		_	ns
53	Propagation delay from rising edge of ACLK ¹	1	16 ²	ns

Notes: 1. For a 200 pF load. Add 0.25 ns for each additional 10 pF. For 100 pF subtruct 2.5 ns.
2. 16 ns for 70°C, 17 ns for 85°C

3.8 Switch Interface Timing

Table 3-7. Switch Interface Timing

Num	Characteristics	Min	Max	Unit
61	Setup time before SRXCLK/STXCLK rising edge	4		ns
62	Hold time after SRXCLK/STXCLK rising edge	1		ns
63	Propagation delay from rising edge of SRXCLK/STXCLK	1	18	ns
64	SRXCLK rising edge to outputs active	1		
65	SRXCLK rising edge to outputs inactive	1	16	

Figure 3-10. Ingress Switch Interface Timing

Figure 3-11. Egress Switch Interface Timing

3.9 External Memory Interface Timing

This section represents External Memory timing parameters for the default definition of the External Memory Timing Configuration Register (EMTCR). These values are for a load of up to 50 pF, which is the rated maximum load for the External Memory interface pins.

3.9.1 Write Cycle Timing

Num	Characteristics	Min	Max	Unit		
81	Write Pulse Width	16	—	ns		
82	EMWR assertion time. EMWR low to end of Write.	22	—	ns		
83	Address Setup Time. EMADD Valid to Beginning of Write.	6	_	ns		
84	Address Valid Time. During this Time EMADD is Valid.	32	_	ns		
85	Address Hold Time. End of Write to EMADD Invalid.	6	_	ns		
87	Data Setup Time. EMDATA Valid to End of Write.	13	_	ns		
88	Data Hold Time. End of Write to EMDATA Invalid.	6	—	ns		
Note:	A write occurs during the overlap of EMBSH0-3, EMBSL0-3, EACEN low and EMWR low.					

Table 3-8. Write Cycle Timing

Figure 3-12. External Memory Write Access Timing

3.9.2 Read Cycle Timing

Table 3-9. Read Cycle Timing

Num	Characteristics	Min	Max	Unit
90	Enable Pulse Width. EMBSH0–EMBSH3, EMBSL0–EMBSL3, EACEN Pulse Width.	28	—	ns
92	Address Setup Time. EMBSH0–EMBSH3, EMBSL0–EMBSL3, EACEN High.	33	—	ns
93	Address Hold Time. EMADD Invalid to EMBSH0–EMBSH3, EMBSL0– EMBSL3, EACEN High	_	1 ¹	ns
94	Data Driving Start Point. EMBSH0–EMBSH3, EMBSL0–EMBSL3, EACEN Low to EMDATA Active.	0	—	ns
95	Data Setup Time. EMDATA Valid to EMBSH0–EMBSH3, EMBSL0– EMBSL3, EACEN High.	5	—	ns
96	Data Hold Time. EMBSH0–EMBSH3, EMBSL0–EMBSL3, EACEN High to EMDATA Invalid.	0	—	ns
97	Data Driving End Point. EMBSH0–EMBSH3, EMBSL0–EMBSL3, EACEN High to EMDATA Inactive ²	-	9	ns

Notes: 1. A RAM with hold time from address change to data change is required.

2. Failure to meet this value may result in contention on EMDATA if a write access follows.

Figure 3-13. External Memory Read Access Timing

Test Information

4.1 Device Identification Register

The code for the MC92501 is $0100_{0001}_{1100}_{0011}_{1010}_{0000}_{0001}_{1101}$.

4.2 Boundary Scan Register

	Table 4-1.	MC92501	Boundary Scan	Bit Definition
--	------------	---------	---------------	----------------

Signal Name	I/O Cell Type	System Mode	Scar	Scan Bit #	
STXCLK	in	in	360	—	—
STXCLAV	bidir	out	359	358	—
STXSOC	bidir	in	357	356	—
STXPRTY	bidir	in	355	354	—
STXDATA7	bidir	in	353	352	—
STXDATA6	bidir	in	351	350	—
STXDATA5	bidir	in	349	348	—
STXDATA4	bidir	in	347	346	—
STXDATA3	bidir	in	345	344	—
STXDATA2	bidir	in	343	342	—
STXDATA1	bidir	in	341	340	—
STXDATA0	bidir	in	339	338	—
STXENB	bidir	in	337	336	—
TXENB	bidir	out	335	334	—
TXFULL	in	in	333	—	—
TXCCLR	bidir	in	332	331	_

Table 4-1. MC92501 Boundary Se	an Bit Definition (Continued)
--------------------------------	-------------------------------

Signal Name	I/O Cell Type	System Mode	Scan Bit #		Output Enable
TXPHYIDV	tri-state	out	330	—	—
TXPRTY	bidir	out	329	328	—
TXSOC	bidir	out	327	326	—
TXDATA7	bidir	out	325	324	—
TXDATA6	bidir	out	323	322	—
TXDATA5	bidir	out	321	320	_
TXDATA4	bidir	out	319	318	—
TXDATA3	bidir	out	317	316	_
TXDATA2	bidir	out	315	314	—
TXDATA1	bidir	out	313	312	—
TXDATA0	bidir	out	311	310	—
TXPHYID3	tri-state	out	309	_	—
TXPHYID2	tri-state	out	308	_	—
TXPHYID1	tri-state	out	307	_	—
TXPHYID0	tri-state	out	306	_	_
MDATA31	bidir	bidir	305	304	enscan1
MDATA30	bidir	bidir	303	302	enscan1
MDATA29	bidir	bidir	301	300	enscan1
MDATA28	bidir	bidir	299	298	enscan1
MDATA27	bidir	bidir	297	296	enscan1
MDATA26	bidir	bidir	295	294	enscan1
MDATA25	bidir	bidir	293	292	enscan1
MDATA24	bidir	bidir	291	290	enscan1
MDATA23	bidir	bidir	289	288	enscan1
MDATA22	bidir	bidir	287	286	enscan1
MDATA21	bidir	bidir	285	284	enscan1
MDATA20	bidir	bidir	283	282	enscan1
MDATA19	bidir	bidir	281	280	enscan1
MDATA18	bidir	bidir	279	278	enscan1

Signal Name	I/O Cell Type	System Mode	Scar	n Bit #	Output Enable
MDATA17	bidir	bidir	277	276	enscan1
MDATA16	bidir	bidir	275	274	enscan1
MDATA15	bidir	bidir	273	272	enscan1
MDATA14	bidir	bidir	271	270	enscan1
MDATA13	bidir	bidir	269	268	enscan1
MDATA12	bidir	bidir	267	266	enscan1
MDATA11	bidir	bidir	265	264	enscan1
MDATA10	bidir	bidir	263	262	enscan1
MDATA9	bidir	bidir	261	260	enscan1
MDATA8	bidir	bidir	259	258	enscan1
MDATA7	bidir	bidir	257	256	enscan1
MDATA6	bidir	bidir	255	254	enscan1
MDATA5	bidir	bidir	253	252	enscan1
MDATA4	bidir	bidir	251	250	enscan1
MDATA3	bidir	bidir	249	248	enscan1
MDATA2	bidir	bidir	247	246	enscan1
MDATA1	bidir	bidir	245	244	enscan1
MDATA0	bidir	bidir	243	242	enscan1
MADD25	bidir	in	241	240	—
MADD24	bidir	in	239	238	—
MADD23	bidir	in	237	236	—
MADD22	bidir	in	235	234	—
MADD21	bidir	in	233	232	_
MADD20	bidir	in	231	230	_
MADD19	bidir	in	229	228	_
MADD18	bidir	in	227	226	_
MADD17	bidir	in	225	224	_
MADD16	bidir	in	223	222	_
MADD15	bidir	in	221	220	

 Table 4-1.
 MC92501
 Boundary Scan Bit Definition (Continued)

Table 4-1. MC92	2501 Boundary S	Scan Bit Definition	(Continued)
-----------------	-----------------	---------------------	-------------

Signal Name	I/O Cell Type	System Mode	Scar	n Bit #	Output Enable
MADD14	bidir	in	219	218	—
MADD13	bidir	in	217	216	_
MADD12	bidir	in	215	214	_
MADD11	bidir	in	213	212	_
MADD10	bidir	in	211	210	_
MADD9	bidir	in	209	208	_
MADD8	bidir	in	207	206	_
MADD7	bidir	in	205	204	_
MADD6	bidir	in	203	202	_
MADD5	bidir	in	201	200	_
MADD4	bidir	in	199	198	_
MADD3	bidir	in	197	196	_
MADD2	bidir	in	195	194	_
MSEL	in	in	193	_	_
MREQ0	tri-state	out	192	_	_
MREQ1	tri-state	out	191	—	_
MDTACK0	tri-state	tri-state	190	enscan2	_
MINT	tri-state	out	189	_	_
MREQ2	tri-state	out	188	_	_
MCLK	in	in	187	_	_
MWR	in	in	186	_	_
MWSH	in	in	185	—	_
MWSL	in	in	184	_	_
MDS	in	in	183can1	_	_
MDATA19	bid			_	_
SRXENB	in	in	182	_	_
SRXDATA7	bidir	tri-state	181	180	enscan4
SRXDATA6	bidir	tri-state	179	178	enscan4
SRXDATA5	bidir	tri-state	177	176	enscan4

Signal Name	I/O Cell Type	System Mode	Scan Bit #		Output Enable
SRXDATA4	bidir	tri-state	175	174	enscan4
SRXDATA3	bidir	tri-state	173	172	enscan4
SRXDATA2	bidir	tri-state	171	170	enscan4
SRXDATA1	bidir	tri-state	169	168	enscan4
SRXDATA0	bidir	tri-state	167	166	enscan4
SRXCLK	in	in	165	enscan4	_
SRXCLAV	bidir	out	164	163	—
SRXSOC	bidir	tri-state	162	161	enscan4
SRXPRTY	bidir	tri-state	160	159	enscan4
MDTACK1	tri-state	tri-state	158	enscan6	_
RXADDR4	tri-state	tri-state	157	enscan3	_
RXSOC	bidir	in	156	155	_
RXENB	bidir	out	154	153	_
RXEMPTY	bidir	in	152	151	_
RXPHYID3	bidir	bidir	150	149	enscan3
RXPHYID2	bidir	bidir	148	147	enscan3
RXPHYID1	bidir	bidir	146	145	enscan3
RXPHYID0	bidir	bidir	144	143	enscan3
RXPRTY	bidir	in	142	141	—
RXDATA7	bidir	in	140	139	_
RXDATA6	bidir	in	138	137	_
RXDATA5	bidir	in	136	135	—
RXDATA4	bidir	in	134	133	_
RXDATA3	bidir	in	132	131	_
RXDATA2	bidir	in	130	129	-
RXDATA1	bidir	in	128	127	—
RXDATA0	bidir	in	126	125	_
EMDATA31	bidir	bidir	124	123	enscan5
EMDATA30	bidir	bidir	122	121	enscan5

Table 4-1. MC92501 B	Boundary Scan	Bit Definition	(Continued)
----------------------	---------------	----------------	-------------

Table 4-1. MC92501 Boundary	Scan Bit Definition	(Continued)
-----------------------------	---------------------	-------------

Signal Name	I/O Cell Type	System Mode	Scar	Bit #	Output Enable
EMDATA29	bidir	bidir	120	119	enscan5
EMDATA28	bidir	bidir	118	117	enscan5
EMDATA27	bidir	bidir	116	115	enscan5
EMDATA26	bidir	bidir	114	113	enscan5
EMDATA25	bidir	bidir	112	111	enscan5
EMDATA24	bidir	bidir	110	109	enscan5
EMDATA23	bidir	bidir	108	107	enscan5
EMDATA22	bidir	bidir	106	105	enscan5
EMDATA21	bidir	bidir	104	103	enscan5
EMDATA20	bidir	bidir	102	101	enscan5
EMDATA19	bidir	bidir	100	99	enscan5
EACEN	tri-state	out	98	_	_
EMWR	tri-state	out	97	_	_
EMDATA18	bidir	bidir	96	95	enscan5
EMDATA17	bidir	bidir	94	93	enscan5
EMDATA16	bidir	bidir	92	91	enscan5
EMDATA15	bidir	bidir	90	89	enscan5
EMDATA14	bidir	bidir	88	87	enscan5
EMDATA13	bidir	bidir	86	85	enscan5
EMDATA12	bidir	bidir	84	83	enscan5
EMDATA11	bidir	bidir	82	81	enscan5
EMDATA10	bidir	bidir	80	79	enscan5
EMDATA9	bidir	bidir	78	77	enscan5
EMDATA8	bidir	bidir	76	75	enscan5
EMDATA7	bidir	bidir	74	73	enscan5
EMDATA6	bidir	bidir	72	71	enscan5
EMDATA5	bidir	bidir	70	69	enscan5
EMDATA4	bidir	bidir	68	67	enscan5
EMDATA3	bidir	bidir	66	65	enscan5

Signal Name	I/O Cell Type	System Mode	Scan Bit #		Output Enable
EMDATA2	bidir	bidir	64	63	enscan5
EMDATA1	bidir	bidir	62	61	enscan5
EMDATA0	bidir	bidir	60	59	enscan5
EMADD23	bidir	out	58	57	—
EMADD22	bidir	out	56	55	—
EMADD21	bidir	out	54	53	—
EMADD20	bidir	out	52	51	—
EMADD19	bidir	out	50	49	_
EMADD18	bidir	out	48	47	—
EMADD17	bidir	out	46	45	—
EMADD16	bidir	out	44	43	—
EMADD15	bidir	out	42	41	—
EMADD14	bidir	out	40	39	—
EMADD13	bidir	out	38	37	—
EMADD12	bidir	out	36	35	—
EMADD11	bidir	out	34	33	—
EMADD10	bidir	out	32	31	—
EMADD9	bidir	out	30	29	—
EMADD8	bidir	out	28	27	—
EMADD7	bidir	out	26	25	—
EMADD6	bidir	out	24	23	—
EMADD5	bidir	out	22	21	—
EMADD4	bidir	out	20	19	—
EMADD3	bidir	out	18	17	—
EMADD2	bidir	out	16	15	—
EMBSH0	tri-state	out	14	—	—
EMBSH1	tri-state	out	13	—	—
EMBSH2	tri-state	out	12	—	—
EMBSH3	tri-state	out	11	—	—

Table 4-1. MC92501 Boundary Scan Bit Definition (Continued)

Signal Name	I/O Cell Type	System Mode	Scan Bit #		Output Enable
EMBSL0	tri-state	out	10	—	—
EMBSL1	tri-state	out	9	—	—
EMBSL2	tri-state	out	8	—	—
EMBSL3	tri-state	out	7	—	—
ARST	in	in	6	—	—
enscan1	(core macro)	_	5	—	—
enscan2	(core macro)	_	4	—	—
enscan3	(core macro)	_	3	—	—
enscan4	(core macro)	_	2	—	—
enscan5	(core macro)	_	1	—	—
enscan6	(core macro)	—	0	—	—

 Table 4-1.
 MC92501
 Boundary Scan Bit Definition (Continued)

Ordering Information

Part	Supply Voltage	Package Type	Pin Count	Order Number
MC92501	3.3 V	Glob-Top Ball Grid Array (GTBGA)	256	MC92501GC

Table 5-1. Ordering Information

MC92501 Data Sheet For More Information On This Product, Go to: www.freescale.com

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

Mfax[™]: RMFAX0@email.sps.mot.com—TOUCHTONE 1-602-244-6609 Motorola Fax Back System —US & Canada ONLY 1-800-774-1848 —http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Customer Focus Center: 1-800-521-6274

MC92501/D

For More Information On This Product, Go to: www.freescale.com